
Jianan Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11731591/publications.pdf Version: 2024-02-01

LIANAN DENC

#	Article	IF	CITATIONS
1	Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016, 2, e1600097.	10.3	705
2	A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors. ACS Nano, 2017, 11, 9490-9499.	14.6	419
3	A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing. Advanced Materials, 2018, 30, e1804944.	21.0	396
4	Singleâ€Threadâ€Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Clothâ€Based Selfâ€Powered Humanâ€Interactive and Biomedical Sensing. Advanced Functional Materials, 2017, 27, 1604462.	14.9	327
5	3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Selfâ€Powered Active Motion Sensors. Advanced Materials, 2017, 29, 1702648.	21.0	321
6	Electric Eel‧kinâ€Inspired Mechanically Durable and Super‧tretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic‧kin Applications. Advanced Materials, 2016, 28, 10024-10032.	21.0	273
7	Multifunctional TENG for Blue Energy Scavenging and Selfâ€Powered Wind‧peed Sensor. Advanced Energy Materials, 2017, 7, 1602397.	19.5	273
8	Vitrimer Elastomerâ€Based Jigsaw Puzzle‣ike Healable Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Materials, 2018, 30, e1705918.	21.0	265
9	Actively Perceiving and Responsive Soft Robots Enabled by Selfâ€Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity―and Pressureâ€&ensing Skins. Advanced Materials, 2018, 30, e1801114.	21.0	254
10	Shape Memory Polymers for Body Motion Energy Harvesting and Selfâ€Powered Mechanosensing. Advanced Materials, 2018, 30, 1705195.	21.0	249
11	Harvesting Broad Frequency Band Blue Energy by a Triboelectric–Electromagnetic Hybrid Nanogenerator. ACS Nano, 2016, 10, 6526-6534.	14.6	244
12	Branch-like Hierarchical Heterostructure (α-Fe ₂ O ₃ /TiO ₂): A Novel Sensing Material for Trimethylamine Gas Sensor. ACS Applied Materials & Interfaces, 2013, 5, 12310-12316.	8.0	230
13	Versatile Core–Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Realâ€Time Humanâ€Interactive Sensing. Advanced Energy Materials, 2018, 8, 1801114.	19.5	212
14	P-type Co3O4 nanomaterials-based gas sensor: Preparation and acetone sensing performance. Sensors and Actuators B: Chemical, 2017, 242, 369-377.	7.8	184
15	Ethanol Gas Detection Using a Yolk-Shell (Core-Shell) α-Fe ₂ O ₃ Nanospheres as Sensing Material. ACS Applied Materials & Interfaces, 2015, 7, 13098-13104.	8.0	170
16	Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices. Journal of Materials Chemistry A, 2014, 2, 10022.	10.3	135
17	Hybrid Co ₃ O ₄ /SnO ₂ Core–Shell Nanospheres as Real-Time Rapid-Response Sensors for Ammonia Gas. ACS Applied Materials & Interfaces, 2016, 8, 6539-6545.	8.0	134
18	Hollow ZnSnO ₃ Cubes with Controllable Shells Enabling Highly Efficient Chemical Sensing Detection of Formaldehyde Vapors. ACS Applied Materials & Interfaces, 2017, 9, 14525-14533.	8.0	110

Jianan Deng

#	Article	IF	CITATIONS
19	Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sensors and Actuators B: Chemical, 2015, 209, 449-455.	7.8	104
20	Design of CuO–TiO ₂ heterostructure nanofibers and their sensing performance. Journal of Materials Chemistry A, 2014, 2, 9030-9034.	10.3	94
21	Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers. Sensors and Actuators B: Chemical, 2013, 184, 21-26.	7.8	92
22	Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: One-pot synthesis and toluene-sensing properties. Sensors and Actuators B: Chemical, 2014, 201, 1-6.	7.8	90
23	P-type octahedral Cu 2 O particles with exposed {111} facets and superior CO sensing properties. Sensors and Actuators B: Chemical, 2017, 239, 211-217.	7.8	83
24	Template-free synthesized hollow NiO–SnO2 nanospheres with high gas-sensing performance. Sensors and Actuators B: Chemical, 2012, 164, 90-95.	7.8	73
25	Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sensors and Actuators B: Chemical, 2013, 176, 323-329.	7.8	73
26	Concave Cu 2 O octahedral nanoparticles as an advanced sensing material for benzene (C 6 H 6) and nitrogen dioxide (NO 2) detection. Sensors and Actuators B: Chemical, 2016, 223, 311-317.	7.8	72
27	Structure-driven efficient NiFe2O4 materials for ultra-fast response electronic sensing platform. Sensors and Actuators B: Chemical, 2018, 255, 1436-1444.	7.8	65
28	Comparison of toluene sensing performances of zinc stannate with different morphology-based gas sensors. Sensors and Actuators B: Chemical, 2016, 227, 448-455.	7.8	62
29	Highly sensitive sensing platform based on ZnSnO 3 hollow cubes for detection of ethanol. Applied Surface Science, 2017, 400, 262-268.	6.1	60
30	Hierarchical structure with heterogeneous phase as high performance sensing materials for trimethylamine gas detecting. Sensors and Actuators B: Chemical, 2015, 220, 1224-1231.	7.8	55
31	Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres. Sensors and Actuators B: Chemical, 2013, 183, 467-473.	7.8	53
32	Synthesis of rattle-type SnO2 structures with porous shells. Journal of Materials Chemistry, 2012, 22, 18111.	6.7	51
33	A class of hierarchical nanostructures: ZnO surface-functionalized TiO2 with enhanced sensing properties. RSC Advances, 2013, 3, 3131.	3.6	49
34	Curling-like Bi2WO6 microdiscs with lamellar structure for enhanced gas-sensing properties. Sensors and Actuators B: Chemical, 2013, 182, 217-222.	7.8	44
35	Fast and real-time acetone gas sensor using hybrid ZnFe ₂ O ₄ /ZnO hollow spheres. RSC Advances, 2016, 6, 66738-66744.	3.6	37
36	Constructing p–n heterostructures for efficient structure–driven ethanol sensing performance. Sensors and Actuators B: Chemical, 2018, 255, 745-753.	7.8	34

JIANAN DENG

#	Article	IF	CITATIONS
37	The synthesis and fast ethanol sensing properties of core–shell SnO ₂ @ZnO composite nanospheres using carbon spheres as templates. New Journal of Chemistry, 2016, 40, 6796-6802.	2.8	26
38	Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co 3 O 4 network. Applied Surface Science, 2017, 426, 951-956.	6.1	21
39	Fast response/recovery performance of comb-like Co3O4 nanostructure. RSC Advances, 2014, 4, 21115.	3.6	14