Wenjie Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11729586/publications.pdf

Version: 2024-02-01

304743 276875 3,118 42 22 41 citations h-index g-index papers 42 42 42 2694 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synergistic effects of Eu and Nb dual substitution on improving the thermoelectric performance of the natural perovskite CaTiO3. Materials Today Physics, 2022, 26, 100741.	6.0	9
2	Effects of Doping Ni on the Microstructures and Thermoelectric Properties of Co-Excessive NbCoSn Half-Heusler Compounds. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34533-34542.	8.0	16
3	Sustainable paper templated ultrathin, light-weight and flexible niobium carbide based films against electromagnetic interference. Carbon, 2021, 183, 929-939.	10.3	9
4	Upcycling Waste Plastics into Multi-Walled Carbon Nanotube Composites via NiCo2O4 Catalytic Pyrolysis. Catalysts, 2021, 11, 1353.	3.5	9
5	Thermoelectric properties of n-type half-Heusler NbCoSn with heavy-element Pt substitution. Journal of Materials Chemistry A, 2020, 8, 14822-14828.	10.3	44
6	Unravelling the Effects of Calcium Substitution in BaGd ₂ CoO ₅ Haldane Gap 1D Material and Its Thermoelectric Performance. Journal of Physical Chemistry C, 2020, 124, 13017-13025.	3.1	2
7	Redox engineering of strontium titanate-based thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 7317-7330.	10.3	18
8	Band Gap Adjustment in Perovskite-type Eu _{1â^'<i>x</i>} Ca _{ <i>x</i>} 7iO ₃ via Ammonolysis. Zeitschrift Fur Physikalische Chemie, 2020, 234, 887-909.	2.8	8
9	Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering. Rare Metals, 2020, 39, 659-670.	7.1	17
10	Realizing <i>p</i> -type NbCoSn half-Heusler compounds with enhanced thermoelectric performance via Sc substitution. Science and Technology of Advanced Materials, 2020, 21, 122-130.	6.1	19
11	Exploring Tantalum as a Potential Dopant to Promote the Thermoelectric Performance of Zinc Oxide. Materials, 2019, 12, 2057.	2.9	9
12	Thermoelectric performance of Nb-doped SrTiO3 enhanced by reduced graphene oxide and Sr deficiency cooperation. Carbon, 2019, 143, 215-222.	10.3	69
13	Synergistic effects of zirconium- and aluminum co-doping on the thermoelectric performance of zinc oxide. Journal of the European Ceramic Society, 2019, 39, 1222-1229.	5 . 7	25
14	Tailoring the structure and thermoelectric properties of BaTiO ₃ via Eu ^{2+<td>2.8</td><td>28</td>}	2.8	28
15	Thermoelectric properties of [Ca2CoO3â^î][CoO2]1,62 as a function of Co/Ca defects and Co3O4 inclusions. Journal of Applied Physics, 2017, 121, .	2.5	8
16	Band structure modification of the thermoelectric Heusler-phase TiFe ₂ Sn via Mn substitution. Physical Chemistry Chemical Physics, 2017, 19, 18273-18278.	2.8	9
17	Synergistic effects of Lanthanum substitution on enhancing the thermoelectric properties of \hat{l}^2 -Zn4Sb3. Journal of Materiomics, 2016, 2, 273-279.	5.7	3

Approaching compositional limits of perovskite – type oxides and oxynitrides by synthesis of Mg0.25Ca0.65Y0.1Ti(O,N)3, Ca1–xYxZr(O,N)3 (0.1Ââ‰ÂxÂâ‰Â0.4), and Sr1–xLaxZr(O,N)3 (0.1Ââ‰ÂxÂâ‰Â0.4). Solid State Sciences, 2016, 54, 7-16.

#	Article	IF	CITATIONS
19	Enhanced thermoelectric performance of \hat{l}^2 -Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5, 17803.	3.3	58
20	Recent Developments in \hat{l}^2 -Zn4Sb3Based Thermoelectric Compounds. Journal of Nanomaterials, 2015, 2015, 1-15.	2.7	8
21	Compatibility approach for the improvement of oxide thermoelectric converters for industrial heat recovery applications. Journal of Applied Physics, 2015, 118, .	2.5	10
22	Phase formation, stability, and oxidation in (Ti, Zr, Hf)NiSn halfâ€Heusler compounds. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1259-1266.	1.8	28
23	Improved thermoelectric performance of (Zr _{0.3} Hf _{0.7})NiSn half-Heusler compounds by Ta substitution. Journal of Applied Physics, 2014, 115, 183704.	2.5	40
24	Thermoelectric study of crossroads material MnTe via sulfur doping. Journal of Applied Physics, 2014, 115, .	2.5	53
25	High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. Journal of Materials Science, 2013, 48, 2745-2760.	3.7	96
26	Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density. Materials, 2013, 6, 1326-1332.	2.9	33
27	The microstructure network and thermoelectric properties of bulk (Bi,Sb)2Te3. Applied Physics Letters, 2012, 101, .	3.3	13
28	Enhanced thermoelectric properties of Bi2(Te1â^'xSex)3-based compounds as n-type legs for low-temperature power generation. Journal of Materials Chemistry, 2012, 22, 20943.	6.7	147
29	Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials, 2012, 2, 379-412.	4.1	287
30	Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials. Journal of Materials Research, 2011, 26, 2795-2802.	2.6	136
31	Investigation of the sintering pressure and thermal conductivity anisotropy of melt-spun spark-plasma-sintered (Bi,Sb) ₂ Te ₃ thermoelectric materials. Journal of Materials Research, 2011, 26, 1791-1799.	2.6	58
32	Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs. Intermetallics, 2011, 19, 1024-1031.	3.9	125
33	Enhancement of the thermoelectric performance of \hat{l}^2 -Zn4Sb3 by in situ nanostructures and minute Cd-doping. Acta Materialia, 2011, 59, 4805-4817.	7.9	70
34	Tuning the thermoelectric properties of polycrystalline FeSb ₂ by the in situ formation of Sb/InSb nanoinclusions. Journal of Materials Research, 2011, 26, 1894-1899.	2.6	16
35	Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb) ₂ Te ₃ Nanocomposites. Nano Letters, 2010, 10, 3283-3289.	9.1	484
36	High performance n-type (Bi,Sb) < sub > 2 < /sub > (Te,Se) < sub > 3 < /sub > for low temperature thermoelectric generator. Journal Physics D: Applied Physics, 2010, 43, 335404.	2.8	57

#	Article	IF	CITATIONS
37	Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 2009, 94, .	3.3	507
38	Synthesis and thermoelectric properties of (Ti,Zr,Hf)(Co,Pd)Sb half-Heusler compounds. Journal Physics D: Applied Physics, 2009, 42, 235407.	2.8	16
39	High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. Journal of Applied Physics, 2009, 105, .	2.5	177
40	The preparation and thermoelectric properties of Ti0.5Zr0.25Hf0.25Co1â^xNixSb half-Heusler compounds. Journal of Applied Physics, 2008, 103, 043711.	2.5	50
41	Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Applied Physics Letters, 2007, 90, 012102.	3.3	337
42	Solar thermoelectrics: direct solar thermal energy conversion., 0,, 289-294.		3