Yongchang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11729/publications.pdf

Version: 2024-02-01

257450 302126 2,463 151 24 citations h-index g-index papers

151 151 151 1814 docs citations times ranked citing authors all docs

39

#	Article	IF	CITATIONS
1	Precipitate coarsening and its effects on the hot deformation behavior of the recently developed \hat{I}^3 '-strengthened superalloys. Journal of Materials Science and Technology, 2021, 67, 95-104.	10.7	104
2	High-Valent Nickel Promoted by Atomically Embedded Copper for Efficient Water Oxidation. ACS Catalysis, 2020, 10, 9725-9734.	11.2	100
3	Deformation behavior and processing maps of Ni 3 Al-based superalloy during isothermal hot compression. Journal of Alloys and Compounds, 2017, 712, 687-695.	5 . 5	90
4	Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor. Nature Communications, 2021, 12, 5052.	12.8	87
5	Coarsening behavior of γ′ precipitates in the γ'+γ area of a Ni3Al-based alloy. Journal of Alloys and Compounds, 2019, 771, 526-533.	5. 5	86
6	Metal–organic framework derived copper catalysts for CO ₂ to ethylene conversion. Journal of Materials Chemistry A, 2020, 8, 11117-11123.	10.3	82
7	Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 623-635.	5 . 6	68
8	Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y 2 O 3 alloy. International Journal of Refractory Metals and Hard Materials, 2017, 69, 266-272.	3.8	58
9	Multifunctional Naphthol Sulfonic Salt Incorporated in Lead-Free 2D Tin Halide Perovskite for Red Light-Emitting Diodes. ACS Photonics, 2020, 7, 1915-1922.	6.6	52
10	Boride-derived oxygen-evolution catalysts. Nature Communications, 2021, 12, 6089.	12.8	51
11	Hot compression deformation behavior and processing maps of ATI 718Plus superalloy. Journal of Alloys and Compounds, 2020, 835, 155195.	5.5	50
12	Micro-organic single crystalline phototransistors of 7,7,8,8-tetracyanoquinodimethane and tetrathiafulvalene. Applied Physics Letters, 2009, 94, .	3.3	42
13	Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot Electron Generation. ACS Nano, 2021, 15, 10553-10564.	14.6	37
14	Fabrication of multi-element alloys by twin wire arc additive manufacturing combined with in-situ alloying. Materials Research Letters, 2020, 8, 477-482.	8.7	36
15	The simultaneous improvements of strength and ductility in W–Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering. Materials Science & Diplication (Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 784, 139329.	5 . 6	36
16	Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels. Materials, 2018, 11, 118.	2.9	35
17	Microstructure Refinement in W-Y2O3 Alloy Fabricated by Wet Chemical Method with Surfactant Addition and Subsequent Spark Plasma Sintering. Scientific Reports, 2017, 7, 6051.	3 . 3	32
18	The synthesis of composite powder precursors <i>via</i> chemical processes for the sintering of oxide dispersion-strengthened alloys. Materials Chemistry Frontiers, 2019, 3, 1952-1972.	5 . 9	32

#	Article	IF	Citations
19	Improved analytical model for isochronal transformation kinetics. Journal of Materials Science, 2008, 43, 4876-4885.	3.7	31
20	Improvement of High-Temperature Mechanical Properties of Low-Carbon RAFM Steel by MX Precipitates. Acta Metallurgica Sinica (English Letters), 2018, 31, 706-712.	2.9	31
21	Adjusting tetrathiafulvalene (TTF) functionality through molecular design for organic field-effect transistors. CrystEngComm, 2014, 16, 5968.	2.6	30
22	Evaluation of cooling rate on electrochemical behavior of Sn–0.3Ag–0.9Zn solder alloy in 3.5Âwt% NaCl solution. Journal of Materials Science: Materials in Electronics, 2015, 26, 11-22.	2.2	30
23	Eliminating bimodal structures of W-Y2O3 composite nanopowders synthesized by wet chemical method via controlling reaction conditions. Journal of Alloys and Compounds, 2019, 774, 122-128.	5.5	30
24	Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature. Acta Materialia, 2021, 220, 117309.	7.9	30
25	The Effect of Precipitate Evolution on Austenite Grain Growth in RAFM Steel. Materials, 2017, 10, 1017.	2.9	25
26	Microstructure evolution behavior of Ni3Al (γ′) phase in eutectic γ-γ′ of Ni3Al-based alloy. Intermetallics, 2018, 98, 28-33.	3.9	24
27	Influences of solution cooling rate on microstructural evolution of a multiphase Ni3Al-based intermetallic alloy. Intermetallics, 2019, 109, 48-59.	3.9	24
28	Ultra-fine W–Y2O3 composite powders prepared by an improved chemical co-precipitation method and its interface structure after spark plasma sintering. Tungsten, 2019, 1, 220-228.	4.8	23
29	Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging. Journal of Materials Research, 2015, 30, 3642-3652.	2.6	22
30	Development of ferrite/bainite bands and study of bainite transformation retardation in HSLA steel during continuous cooling. Metals and Materials International, 2014, 20, 19-25.	3.4	21
31	Formation of MgO whiskers on the surface of bulk MgB2 superconductors during in situ sintering. Journal of Materials Science, 2008, 43, 1438-1443.	3.7	20
32	Martensite transformation in the modified high Cr ferritic heat-resistant steel during continuous cooling. Journal of Materials Research, 2012, 27, 2779-2789.	2.6	20
33	High performance MgB ₂ superconducting wires fabricated by improved internal Mg diffusion process at a low temperature. Journal of Materials Chemistry C, 2016, 4, 9469-9475.	5.5	20
34	Acicular ferrite formation during isothermal holding in HSLA steel. Journal of Materials Science, 2016, 51, 3555-3563.	3.7	20
35	Kinetics of isochronal austenization in modified high Cr ferritic heat-resistant steel. Applied Physics A: Materials Science and Processing, 2011, 105, 949-957.	2.3	19
36	Microstructure refinement in W–Y ₂ O ₃ alloys <i>via</i> an improved hydrothermal synthesis method and low temperature sintering. Inorganic Chemistry Frontiers, 2020, 7, 659-666.	6.0	19

3

#	Article	IF	CITATIONS
37	Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel. Journal of Materials Research, 2015, 30, 2090-2100.	2.6	18
38	Tuning Superconductivity in FeSe Thin Films via Magnesium Doping. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7891-7896.	8.0	18
39	Hot deformation behavior of Ti–22Al–25Nb alloy by processing maps and kinetic analysis. Journal of Materials Research, 2016, 31, 1764-1772.	2.6	18
40	Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel. Journal of Materials Research, 2017, 32, 1376-1385.	2.6	18
41	Formation of Fine B2/βÂ+ÂO Structure and Enhancement of Hardness in the Aged Ti2AlNb-Based Alloys Prepared by Spark Plasma Sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4365-4371.	2.2	18
42	Precipitation and growth behavior of mushroom-like Ni3Al. Materials Letters, 2018, 211, 5-8.	2.6	18
43	Consideration of the growth mode in isochronal austenite-ferrite transformation of ultra-low-carbon Fe–C alloy. Applied Physics A: Materials Science and Processing, 2010, 98, 211-217.	2.3	17
44	Phase formation sequence of high-temperature Zn–4Al–3Mg solder. Journal of Materials Science: Materials in Electronics, 2013, 24, 336-344.	2.2	17
45	Microstructural evolution of oxide-dispersion-strengthened Feâ€"Cr model steels during mechanical milling and subsequent hot pressing. Journal of Materials Science, 2013, 48, 1826-1836.	3.7	17
46	Analysis of the Effect of Tungsten Inert Gas Welding Sequences on Residual Stress and Distortion of CFETR Vacuum Vessel Using Finite Element Simulations. Metals, 2018, 8, 912.	2.3	17
47	Cyclic oxidation behavior of Ni3Al-basedsuperalloy. Vacuum, 2019, 169, 108938.	3.5	17
48	Hot Deformation Behavior and Microstructure Evolution of 14Cr ODS Steel. Materials, 2018, 11, 1044.	2.9	16
49	Enhanced mechanical properties in oxide-dispersion-strengthened alloys achieved via interface segregation of cation dopants. Science China Materials, 2021, 64, 987-998.	6.3	16
50	The isochronal $\hat{l}'\hat{A}\hat{a}^{\dagger}'\hat{A}\hat{l}^3$ transformation of high Cr ferritic heat-resistant steel during cooling. Journal of Materials Science, 2011, 46, 6910-6915.	3.7	15
51	Formation and widening mechanisms of envelope structure and its effect on creep behavior of a multiphase Ni3Al-based intermetallic alloy. Materials Science & Department of the Materials: Properties, Microstructure and Processing, 2019, 763, 138158.	5.6	15
52	Precipitation and growth behavior of $\hat{l}^3 \hat{a} \in \mathbb{Z}^2$ phase in Ni3Al-based superalloy under thermal exposure. Journal of Materials Science, 2019, 54, 13368-13377.	3.7	15
53	Formation mechanisms of Y–Al–O complex oxides in 9Cr-ODS steels with Al addition. Journal of Materials Science, 2019, 54, 7893-7907.	3.7	15
54	Enhanced superconductivity induced by several-unit-cells diffusion in an FeTe/FeSe bilayer heterostructure. Physical Review B, 2019, 99, .	3.2	15

#	Article	IF	CITATIONS
55	The effects of third alloying elements on the bulk Ag3Sn formation in slowly cooled Sn–3.5Ag lead-free solder. Journal of Materials Science: Materials in Electronics, 2008, 19, 275-280.	2.2	14
56	Effects of cold rolling on the precipitation and the morphology of \hat{l} -phase in Inconel 718 alloy. Journal of Materials Research, 2016, 31, 443-454.	2.6	14
57	Enhancement of superconductivity in FeNb _x Se _{0.95} by hole carrier doping. Journal of Materials Chemistry C, 2019, 7, 10019-10027.	5. 5	14
58	Abnormal growth of Ag3Sn intermetallic compounds in Sn-Ag lead-free solder. Science Bulletin, 2006, 51, 1766-1770.	1.7	13
59	Hot deformation behavior and microstructural evolution of Nb–V–Ti microalloyed ultra-high strength steel. Journal of Materials Research, 2017, 32, 3777-3787.	2.6	13
60	Characterization of 14Cr ODS Steel Fabricated by Spark Plasma Sintering. Metals, 2019, 9, 200.	2.3	13
61	Characterization of γ′ precipitate and γ/γ′ interface in polycrystalline Ni3Al-based superalloys. Vacuum, 2020, 176, 109310.	3.5	13
62	Effect of M ₃ C on the Precipitation Behavior of M ₂₃ C ₆ Phase during Early Stage of Tempering in T91 Ferritic Steel. Steel Research International, 2011, 82, 1362-1367.	1.8	12
63	Kinetics of Martensite Formation in Substitutional Fe-Al Alloys: Dilatometric Analysis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1430-1440.	2.2	12
64	Precipitation kinetics of M ₂₃ C ₆ in T/P92 heat-resistant steel by applying soft-impingement correction. Journal of Materials Research, 2013, 28, 1529-1537.	2.6	12
65	Microstructural evolution and phase transformation of Ni3Al-based superalloys after thermal exposure. Vacuum, 2020, 171, 109038.	3.5	12
66	Influence of Yttrium Addition on the Reduction Property of Tungsten Oxide Prepared via Wet Chemical Method. Acta Metallurgica Sinica (English Letters), 2020, 33, 275-280.	2.9	12
67	Microstructure Evolution of Primary γ′ Phase in Ni3Al-Based Superalloy. Acta Metallurgica Sinica (English Letters), 2020, 33, 1709-1726.	2.9	12
68	Observation of Flux Jump in (MgB2)0.96Ni0.04 Superconductor Doped with Milled Ni powders. Journal of Superconductivity and Novel Magnetism, 2011, 24, 2013-2017.	1.8	11
69	Microstructure evolution and martensitic transformation behaviors of 9Cr–1.8W–0.3Mo ferritic heat-resistant steel during quenching and partitioning treatment. Journal of Materials Research, 2013, 28, 2835-2843.	2.6	11
70	Effects of aging on shape memory and wear resistance of a Fe–Mn–Si-based alloy. Journal of Materials Research, 2014, 29, 2809-2816.	2.6	11
71	Effects of Static Recrystallization and Precipitation on Mechanical Properties of OOCr12 Ferritic Stainless Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1560-1567.	2.1	11
72	Influence of cooling rates on microstructure and tensile properties of a heat treated Ti2AlNb-based alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141345.	5 . 6	11

#	Article	IF	CITATIONS
73	Kinetic consideration for the incubation of the phase transformation and its application to the crystallization ofÂamorphous alloy. Applied Physics A: Materials Science and Processing, 2008, 92, 703-707.	2.3	10
74	Effects of Thermal Aging on Microstructure and Microhardness of Sn-3.7Ag-0.9Zn-1In Solder. Journal of Electronic Materials, 2009, 38, 345-350.	2.2	10
75	Approaches for isochronal transformation kinetics model andÂtheir application to the crystallization of amorphous alloys. Applied Physics A: Materials Science and Processing, 2009, 96, 721-729.	2.3	10
76	The Sintering Process and Reaction Kinetics of Fe–Se System after Ball Milling Treatment. Journal of Superconductivity and Novel Magnetism, 2014, 27, 775-780.	1.8	10
77	Microstructure and Mechanical Properties of Ti ₂ AlNbâ€Based Alloys Synthesized by Spark Plasma Sintering from Preâ€Alloyed and Ballâ€Milled Powder. Advanced Engineering Materials, 2018, 20, 1700659.	3.5	10
78	Austenitizing Temperature Effects on the Martensitic Transformation, Microstructural Characteristics, and Mechanical Performance of Modified Ferritic Heat-Resistant Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3525-3538.	2.2	10
79	Precipitation of intersected plate-like $\hat{I}^3 \hat{a} \in \mathbb{C}^2$ phase in \hat{I}^2 and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138439.	5.6	10
80	Hot Deformation Behavior and Recrystallization Mechanism in an As-Cast CoNi-Based Superalloy. Metals and Materials International, 2022, 28, 1488-1498.	3.4	10
81	Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution. Journal of Materials Science and Technology, 2022, 106, 19-27.	10.7	10
82	Superconducting properties of Y2O3/SiC Co-doped bulk MgB2. Journal of Superconductivity and Novel Magnetism, 2012, 25, 357-361.	1.8	9
83	Isochronal Phase Transformations of Lowâ€Carbon High Strength Low Alloy Steel upon Continuous Cooling. Steel Research International, 2013, 84, 184-191.	1.8	9
84	The formation of nano-layered grains and their enhanced superconducting transition temperature in Mg-doped FeSe0.9 bulks. Scientific Reports, 2015, 4, 6481.	3.3	9
85	Flow Characteristics of a Medium–High Carbon Mn-Si-Cr Alloyed Steel at High Temperatures. Journal of Materials Engineering and Performance, 2019, 28, 5104-5115.	2.5	9
86	Formation of multiply twinned martensite plates in rapidly solidified Ni3Al-based superalloys. Materials Letters, 2019, 250, 147-150.	2.6	9
87	Microstructure and mechanical properties of Lead-free Sn–Cu solder composites prepared by rapid directional solidification. Journal of Materials Science: Materials in Electronics, 2007, 18, 1235-1238.	2.2	8
88	Effect of high-temperature annealing on the microstructural formation of Sn–3.7Ag–0.9Zn–xAl lead-free solder. Journal of Materials Science: Materials in Electronics, 2009, 20, 139-143.	2.2	8
89	Research on splitting phenomenon of isochronal martensitic transformation in T91 ferritic steel. Phase Transitions, 2012, 85, 461-470.	1.3	8
90	Comparison of carbon-doped MgB2 bulks fabricated from pre-synthesized Mg/CNT and Mg/amorphous carbon composites. Applied Physics A: Materials Science and Processing, 2014, 114, 919-924.	2.3	8

#	Article	IF	CITATIONS
91	Microstructure Evolution of HSLA Pipeline Steels after Hot Uniaxial Compression. Materials, 2016, 9, 721.	2.9	8
92	The isotope effect of boron on the carbon doping and critical current density of Mg ¹¹ 8 ₂ superconductors. Journal of Materials Chemistry C, 2017, 5, 663-668.	5.5	8
93	Herringbone Structure and Significantly Enhanced Hardness in W-Modified Ti2AlNb Alloys by Spark Plasma Sintering. Metals and Materials International, 2019, 25, 1000-1007.	3.4	8
94	Helium bubble evolution and deformation of single crystal α-Fe. Journal of Materials Science, 2019, 54, 1785-1796.	3.7	8
95	Characterization of Microstructure and Stress Corrosion Cracking Susceptibility in a Multi-pass Austenitic Stainless Steel Weld Joint by Narrow-Gap TIG. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4549-4562.	2.2	8
96	The Correlation Between the Microstructural Parameters and Mechanical Properties of Reduced Activation Ferritic–Martensitic (RAFM) Steel: Influence of Roll Deformation and Medium Temperature Tempering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 119-128.	2.2	8
97	Critical temperature for massive transformation in ultra-low-carbon Fe–C alloys. International Journal of Materials Research, 2008, 99, 925-932.	0.3	7
98	Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application. Energies, 2017, 10, 409.	3.1	7
99	Deformation Mechanism of L1 ₂ â€ <i>γ</i> ′ Phase in Bimodal <i>γ</i> ″â€ <i>γ</i> ′ Precipita Hardened Inconel 718 Superalloy. Advanced Engineering Materials, 2018, 20, 1800652.	ation 3.5	7
100	Diffusion Bonding of 9Cr Martensitic/Ferritic Heat-Resistant Steels with an Electrodeposited Ni Interlayer. Metals, 2018, 8, 1012.	2.3	7
101	Influence of Al Addition Upon the Microstructure and Mechanical Property of Dual-Phase 9Cr-ODS Steels. Metals and Materials International, 2019, 25, 168-178.	3.4	7
102	Effect of interlayer on microstructure and mechanical properties of diffusional-bonded Ni3Al-based superalloy/S31042 steel joint. Journal of Manufacturing Processes, 2021, 72, 252-261.	5.9	7
103	Effects of thermal treatment on microstructure andÂmicrohardness of rapidly solidified Sn–Ag–Zn eutectic solder. Applied Physics A: Materials Science and Processing, 2009, 95, 409-413.	2.3	6
104	Martensite–austenite transformation kinetics of high Cr ferritic heat-resistant steel. International Journal of Materials Research, 2013, 104, 935-940.	0.3	6
105	Improved Superconducting properties in the Mg11B2 low activation superconductor prepared by low-temperature sintering. Scientific Reports, 2016, 6, 25498.	3.3	6
106	Hot Deformation Behavior of ATI 718Plus Alloy with Different Microstructures. Acta Metallurgica Sinica (English Letters), 0, , 1.	2.9	6
107	Precipitates evolution and tensile behavior of wrought Ni-based ATI 718Plus superalloy during long-term thermal exposure. Science China Technological Sciences, 2022, 65, 1283-1299.	4.0	6
108	Superconducting properties and growth mechanism of layered structure in MgB2 bulks with Cu/Y2O3 co-doping. Journal of Materials Science: Materials in Electronics, 2013, 24, 1451-1457.	2.2	5

#	Article	IF	Citations
109	Bainitic transformation behavior of ultra-high strength 30CrNi3MoV steel after experiencing small deformation in the nonrecrystallization austenite region. Journal of Materials Research, 2013, 28, 2844-2851.	2.6	5
110	Relationship between austenite stability and martensite formation in modified 9Cr-1Mo steel. International Journal of Materials Research, 2014, 105, 232-239.	0.3	5
111	Influence of aging on shape memory effect and corrosion resistance of a new Fe–Mn–Si-based alloy. Journal of Materials Research, 2015, 30, 179-185.	2.6	5
112	Effects of morphology of Mg powder precursor on phase formation and superconducting properties of Mg ¹¹ B ₂ low activation superconductor. Journal of Materials Chemistry C, 2018, 6, 8069-8075.	5.5	5
113	Creep behaviors of multiphase Ni3Al-based intermetallic alloy after 1000°C-1000Âh long-term aging at intermediate temperatures. Materials Science & Discretiance amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139701.	5.6	5
114	Microstructure and Tensile Strength of the Bonded Interfaces and Parent Materials in W/ODS Steel Joints Fabricated by Direct SSDB. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3647-3660.	2.2	5
115	Abnormal austenite-ferrite transformation behavior in pure iron. Science Bulletin, 2004, 49, 972-975.	1.7	4
116	Influence of Premilling Time on the Sintering Process and Superconductive Properties of FeSe. IEEE Transactions on Applied Superconductivity, 2012, 22, 7300105-7300105.	1.7	4
117	Bainite Formation Kinetics During Isothermal Holding in Modified High Cr Ferritic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5447-5455.	2.2	4
118	Microstructural evolution of MgAl2O4 oxide-dispersion-strengthened alloy by mechanical milling and hot isostatic pressing. Journal of Materials Research, 2014, 29, 1440-1447.	2.6	4
119	Thermodynamic and kinetic evidence for MgO formation and pinning behavior in glycine-doped MgB2 bulks. Journal of Materials Science, 2016, 51, 2665-2676.	3.7	4
120	Precipitation of Carbides and Dissolution of Widmanstäten Structure for Enhanced Hardness in Ti2AlNb-Based Alloys. Journal of Materials Engineering and Performance, 2019, 28, 1892-1901.	2.5	4
121	Residual Ferrite Control of 9Cr ODS Steels by Tailoring Reverse Austenite Transformation. Acta Metallurgica Sinica (English Letters), 2021, 34, 187-195.	2.9	4
122	Short-term corrosion behavior of polycrystalline Ni3Al-based superalloy in sulfur-containing atmosphere. Intermetallics, 2022, 142, 107446.	3.9	4
123	Effect of microstructure on temperature dependence of deformation behavior in polycrystalline CoNi-based superalloy. Journal of Materials Science, 2022, 57, 687-699.	3.7	4
124	A Novel Approach for Efficient Ni Nanoparticle Doping of MgB\$_{f 2}\$ by Liquid-Assisted Sintering. IEEE Nanotechnology Magazine, 2011, 10, 331-337.	2.0	3
125	Influence of Ni addition on the process of phase formation in MgB2 bulk. Applied Physics A: Materials Science and Processing, 2012, 107, 877-883.	2.3	3
126	Microstructure and interface evolution of Sn-2.5Bi-1.4In-1Zn-0.3Ag/Cu joint during isothermal aging. Journal of Materials Science: Materials in Electronics, 2013, 24, 4122-4128.	2.2	3

#	Article	IF	Citations
127	The effect of ball-milling treatment of original powders on the sintering process and critical current density of graphite-doped MgB2 bulks. Journal of Materials Science, 2013, 48, 2485-2489.	3.7	3
128	Enhancement of Critical Current Density in MgB2 Bulk with CNT-coated Al Addition. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1659-1664.	1.8	3
129	Non-instantaneous growth characteristics of martensitic transformation in high Cr ferritic creep-resistant steel. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	3
130	Evaluation of quenching-induced lattice strain and superconducting properties in un-doped and glycine-doped MgB2 bulks. Journal of Materials Science: Materials in Electronics, 2016, 27, 9431-9436.	2.2	3
131	Induction of diffusion and construction of metallurgical interfaces directly between immiscible Mo and Ag by irradiation-induced point defects. RSC Advances, 2017, 7, 53763-53769.	3.6	3
132	Scattering effect of the well-ordered MgB4 impurity phase in two-step sintered polycrystalline MgB2 with glycine addition. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	3
133	Removal of MgO and enhancement of critical current density in urea-doped MgB2 bulks by melting impregnation method. Journal of Materials Science: Materials in Electronics, 2017, 28, 15625-15629.	2.2	3
134	Enhancement of critical current density in MgB2 bulks burying sintered with commercial MgB2 powder. Journal of Materials Science: Materials in Electronics, 2018, 29, 10323-10328.	2.2	3
135	Enhancement of critical current density by borohydride pinning in H-doped MgB2 bulks. Journal of Applied Physics, 2019, 125, 113901.	2.5	3
136	On the Process Variables and Weld Quality of a Linear Friction Welded Dissimilar Joint between S31042 and S34700 Austenitic Steels. Advanced Engineering Materials, 2019, 21, 1801354.	3.5	3
137	Mechanical Performances of Al-Si-Mg Alloy with Dilute Sc and Sr Elements. Materials, 2020, 13, 665.	2.9	3
138	The effect of Cu addition on the sintering process and superconductive properties ofÂμm-SiC-doped MgB2 bulks. Applied Physics A: Materials Science and Processing, 2009, 96, 975-978.	2.3	2
139	Effects of Ball Milling on the Sintering Process and Superconducting Properties of \$(hbox{MgB}_{2})_{0.96}hbox{Ni}_{0.04}\$ Bulks. IEEE Transactions on Applied Superconductivity, 2012, 22, 6800405-6800405.	1.7	2
140	Correlation between Zn-Rich Phase and Corrosion/Oxidation Behavior of Sn–8Zn–3Bi Alloy. Metals, 2016, 6, 175.	2.3	2
141	Enhancement of synthesis efficiency and critical current density in glycine-doped MgB2 bulks by two-step sintering. Journal of Materials Science: Materials in Electronics, 2017, 28, 5645-5651.	2.2	2
142	Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel. International Journal of Materials Research, 2017, 108, 12-19.	0.3	2
143	Statistical Mechanics Treatment of the Broadened Snoek Relaxation Peak in Ternary Niobium–Vanadium–Oxygen Alloys. Materials, 2018, 11, 1948.	2.9	2
144	Multi-phase transformation kinetics of HSLA steels during continuous cooling: experiments and cellular automaton (CA) simulation. Philosophical Magazine, 2020, 100, 2001-2017.	1.6	2

#	Article	IF	CITATIONS
145	Nanoscale segregation mechanism of cation dopant at the matrix/oxide interface in oxide dispersion-strengthened alloys. Journal of Materials Science, 2021, 56, 6251-6268.	3.7	2
146	Inversion Calculation of the Interatomic Potentials for Ni0.75AlxMo0.25–x Alloy Employing Microscopic Phase-Field Model. Science of Advanced Materials, 2018, 10, 904-912.	0.7	2
147	Modification Mechanism and Uniaxial Fatigue Performances of A356.2 Alloy Treated by Al-Sr-La Composite Refinement-Modification Agent. Acta Metallurgica Sinica (English Letters), 2022, 35, 901-914.	2.9	2
148	Effect of Heat Treatment on the Microstructure and Mechanical Properties of Al–9Si–0.4Mg–0.1Cu Alloy. Advanced Engineering Materials, 2022, 24, .	3.5	2
149	Interstitial-interstitial interaction of oxygen atoms in a Nb-based ternary body-centered-cubic system. Journal of Applied Physics, 2011, 109, 113536.	2.5	1
150	The Effect of Cu Addition on the Phase Formation and Critical Current Density in the Sugar Doped MgB2 Superconductor. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1683-1688.	1.8	1
151	Microscopic Investigation of High-Temperature Oxidation of hcp-ZrAl2. Oxidation of Metals, 2020, 94, 431-445.	2.1	1