
Remo Frei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11726543/publications.pdf Version: 2024-02-01

REMO EDE

#	Article	IF	CITATIONS
1	Inverse associations between food diversity in the second year of life and allergic diseases. Annals of Allergy, Asthma and Immunology, 2022, 128, 39-45.	1.0	13
2	Immune Responsiveness to LPS Determines Risk of Childhood Wheeze and Asthma in 17q21 Risk Allele Carriers. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 641-650.	5.6	13
3	Environmental influences on childhood allergies and asthma — The Farm effect. Pediatric Allergy and Immunology, 2022, 33, .	2.6	20
4	Excessive Unbalanced Meat Consumption in the First Year of Life Increases Asthma Risk in the PASTURE and LUKAS2 Birth Cohorts. Frontiers in Immunology, 2021, 12, 651709.	4.8	7
5	Spermidine and spermine exert protective effects within the lung. Pharmacology Research and Perspectives, 2021, 9, e00837.	2.4	31
6	EAACI position paper on diet diversity in pregnancy, infancy and childhood: Novel concepts and implications for studies in allergy and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 497-523.	5.7	101
7	Initial butyrate producers during infant gut microbiota development are endospore formers. Environmental Microbiology, 2020, 22, 3909-3921.	3.8	49
8	Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nature Medicine, 2020, 26, 1766-1775.	30.7	202
9	Exposure of Children to Rural Lifestyle Factors Associated With Protection Against Allergies Induces an Anti-Neu5Gc Antibody Response. Frontiers in Immunology, 2019, 10, 1628.	4.8	11
10	Parents know it best: Prediction of asthma and lung function by parental perception of early wheezing episodes. Pediatric Allergy and Immunology, 2019, 30, 795-802.	2.6	7
11	EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1429-1444.	5.7	103
12	Association between antibiotic treatment during pregnancy and infancy and the development of allergic diseases. Pediatric Allergy and Immunology, 2019, 30, 423-433.	2.6	68
13	Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nature Communications, 2019, 10, 5711.	12.8	141
14	Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 899-909.	5.7	58
15	High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 799-809.	5.7	327
16	Exposure to nonmicrobial N-glycolylneuraminic acid protects farmers' children against airway inflammation and colitis. Journal of Allergy and Clinical Immunology, 2018, 141, 382-390.e7.	2.9	44
17	Microbiome and asthma. Asthma Research and Practice, 2018, 4, 1.	2.4	117
18	Phenotypes of Atopic Dermatitis Depending on the Timing of Onset and Progression in Childhood. JAMA Pediatrics, 2017, 171, 655.	6.2	197

Remo Frei

#	Article	IF	CITATIONS
19	Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts. Journal of Allergy and Clinical Immunology, 2017, 139, 1935-1945.e12.	2.9	76
20	Histamine-secreting microbes are increased in the gut of adult asthma patients. Journal of Allergy and Clinical Immunology, 2016, 138, 1491-1494.e7.	2.9	109
21	Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. Journal of Allergy and Clinical Immunology, 2016, 138, 984-1010.	2.9	612
22	The Surface-Associated Exopolysaccharide of Bifidobacterium longum 35624 Plays an Essential Role in Dampening Host Proinflammatory Responses and Repressing Local T _H 17 Responses. Applied and Environmental Microbiology, 2016, 82, 7185-7196.	3.1	126
23	Histamine Receptor 2 is Required to Suppress Innate Immune Responses to Bacterial Ligands in Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2016, 22, 1575-1586.	1.9	33
24	The Hygiene Hypothesis. , 2016, , 77-96.		4
25	Influence of microbiome and diet on immune responses in food allergy models. Drug Discovery Today: Disease Models, 2015, 17-18, 71-80.	1.2	16
26	Prebiotics, probiotics, synbiotics, and the immune system. Current Opinion in Gastroenterology, 2015, 31, 153-158.	2.3	204
27	Increased food diversity in the first year of life is inversely associated with allergic diseases. Journal of Allergy and Clinical Immunology, 2014, 133, 1056-1064.e7.	2.9	237
28	Histamine receptor 2 is a key influence in immune responses to intestinal histamine-secreting microbes. Journal of Allergy and Clinical Immunology, 2014, 134, 744-746.e3.	2.9	62
29	Expression of Genes Related to Anti-Inflammatory Pathways Are Modified Among Farmers' Children. PLoS ONE, 2014, 9, e91097.	2.5	40
30	Histamine receptor 2 modifies dendritic cell responses to microbial ligands. Journal of Allergy and Clinical Immunology, 2013, 132, 194-204.e12.	2.9	102
31	Immunomodulation by Bifidobacterium infantis 35624 in the Murine Lamina Propria Requires Retinoic Acid-Dependent and Independent Mechanisms. PLoS ONE, 2013, 8, e62617.	2.5	76
32	<i>Bifidobacterium infantis</i> 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut, 2012, 61, 354-366.	12.1	242
33	Development of atopic dermatitis according to age of onset and association with early-life exposures. Journal of Allergy and Clinical Immunology, 2012, 130, 130-136.e5.	2.9	116
34	Prenatal and early-life exposures alter expression of innate immunity genes: The PASTURE cohort study. Journal of Allergy and Clinical Immunology, 2012, 130, 523-530.e9.	2.9	87
35	Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. Journal of Allergy and Clinical Immunology, 2011, 127, 179-185.e1.	2.9	152
36	MHC Class II Molecules Enhance Toll-Like Receptor Mediated Innate Immune Responses. PLoS ONE, 2010, 5, e8808.	2.5	65

Remo Frei

#	Article	IF	CITATIONS
37	An IgE-associated polymorphism in STAT6 alters NF-κB binding, STAT6 promoter activity, and mRNA expression. Journal of Allergy and Clinical Immunology, 2009, 124, 583-589.e6.	2.9	30
38	Not all farming environments protect against the development of asthma and wheeze in children. Journal of Allergy and Clinical Immunology, 2007, 119, 1140-1147.	2.9	252
39	A polymorphism in CD14 modifies the effect of farm milk consumption on allergic diseases and CD14 gene expression. Journal of Allergy and Clinical Immunology, 2007, 120, 1308-1315.	2.9	93
40	Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. Journal of Allergy and Clinical Immunology, 2006, 117, 817-823.	2.9	413