Jinghong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11724548/publications.pdf

Version: 2024-02-01

10986 22832 32,251 111 71 112 citations h-index g-index papers 113 113 113 36714 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews, 2012, 112, 6027-6053.	47.7	3,024
2	P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano, 2010, 4, 380-386.	14.6	2,946
3	Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 2010, 4, 1790-1798.	14.6	1,977
4	Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 2009, 4, 505-509.	31.5	1,459
5	Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 2011, 29, 205-212.	9.3	1,327
6	Graphene-based materials in electrochemistry. Chemical Society Reviews, 2010, 39, 3157.	38.1	1,297
7	Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Advanced Functional Materials, 2009, 19, 2782-2789.	14.9	1,132
8	Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications, 2009, 11, 889-892.	4.7	1,067
9	Aptamer/Graphene Oxide Nanocomplex for <i>in Situ</i> Molecular Probing in Living Cells. Journal of the American Chemical Society, 2010, 132, 9274-9276.	13.7	1,020
10	Nanostructured carbon for energy storage and conversion. Nano Energy, 2012, 1, 195-220.	16.0	895
11	Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Analytical Chemistry, 2010, 82, 2341-2346.	6.5	848
12	Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Analytical Chemistry, 2010, 82, 2341-2346. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochemistry Communications, 2009, 11, 846-849.	6.5 4.7	675
	Chemistry, 2010, 82, 2341-2346. Preparation and electrochemical performance for methanol oxidation of pt/graphene		
12	Chemistry, 2010, 82, 2341-2346. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochemistry Communications, 2009, 11, 846-849. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full	4.7	675
12	Chemistry, 2010, 82, 2341-2346. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochemistry Communications, 2009, 11, 846-849. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. Journal of the American Chemical Society, 2016, 138, 14686-14693. Tuning Photoelectrochemical Performances of Agâ^'TiO ₂ Nanocomposites via	4.7 13.7	675 647
12 13 14	Chemistry, 2010, 82, 2341-2346. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochemistry Communications, 2009, 11, 846-849. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. Journal of the American Chemical Society, 2016, 138, 14686-14693. Tuning Photoelectrochemical Performances of Agâ⁻¹TiO⟨sub⟩2⟨/sub⟩ Nanocomposites via Reduction/Oxidation of Ag. Chemistry of Materials, 2008, 20, 6543-6549. Graphene and Grapheneâ€like Layered Transition Metal Dichalcogenides in Energy Conversion and	4.7 13.7 6.7	675 647 546
12 13 14	Chemistry, 2010, 82, 2341-2346. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochemistry Communications, 2009, 11, 846-849. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. Journal of the American Chemical Society, 2016, 138, 14686-14693. Tuning Photoelectrochemical Performances of Agâ⁻¹TiO⟨sub⟩2⟨/sub⟩ Nanocomposites via Reduction/Oxidation of Ag. Chemistry of Materials, 2008, 20, 6543-6549. Graphene and Grapheneâ€like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10, 2165-2181. Two-dimensional layered MoS⟨sub⟩2⟨/sub⟩: rational design, properties and electrochemical	4.7 13.7 6.7	675 647 546 535

#	Article	IF	CITATIONS
19	A low-temperature method to produce highly reduced graphene oxide. Nature Communications, 2013, 4, 1539.	12.8	436
20	Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds. Analytical Chemistry, 2009, 81, 9710-9715.	6.5	397
21	Preparation of SnO ₂ -Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability. Journal of Physical Chemistry C, 2010, 114, 21770-21774.	3.1	377
22	Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Analytical Chemistry, 2010, 82, 6208-6214.	6.5	365
23	Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy and Environmental Science, 2013, 6, 1362.	30.8	355
24	Positive Potential Operation of a Cathodic Electrogenerated Chemiluminescence Immunosensor Based on Luminol and Graphene for Cancer Biomarker Detection. Analytical Chemistry, 2011, 83, 3817-3823.	6.5	347
25	Ionic liquids in surface electrochemistry. Physical Chemistry Chemical Physics, 2010, 12, 1685.	2.8	327
26	Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 2015, 7, 1250-1269.	5.6	290
27	Selfâ€Assembled Graphene–Enzyme Hierarchical Nanostructures for Electrochemical Biosensing. Advanced Functional Materials, 2010, 20, 3366-3372.	14.9	256
28	Facilitated Lithium Storage in MoS2Overlayers Supported on Coaxial Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 1675-1682.	3.1	253
29	Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chemical Society Reviews, 2018, 47, 6795-6823.	38.1	250
30	Photoelectrochemical Study on Charge Transfer Properties of TiO2â^B Nanowires with an Application as Humidity Sensors. Journal of Physical Chemistry B, 2006, 110, 22029-22034.	2.6	247
31	Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution. Journal of the American Chemical Society, 2009, 131, 9908-9909.	13.7	238
32	Au/TiO ₂ /Au as a Plasmonic Coupling Photocatalyst. Journal of Physical Chemistry C, 2012, 116, 6490-6494.	3.1	220
33	Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry, 2011, 21, 5319.	6.7	219
34	Hierarchical Structures Based on Twoâ€Dimensional Nanomaterials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2017, 7, 1601906.	19.5	216
35	In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet–based sensing platform in living cells. Nature Protocols, 2014, 9, 1944-1955.	12.0	215
36	Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2527-2539.	10.3	214

#	Article	IF	Citations
37	In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst. Small, 2017, 13, 1602873.	10.0	212
38	Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosensors and Bioelectronics, 2011, 26, 2632-2637.	10.1	196
39	Oneâ€Pot Synthesis, Characterization, and Enhanced Photocatalytic Activity of a BiOBr–Graphene Composite. Chemistry - A European Journal, 2012, 18, 14359-14366.	3.3	191
40	In Situ Live Cell Sensing of Multiple Nucleotides Exploiting DNA/RNA Aptamers and Graphene Oxide Nanosheets. Analytical Chemistry, 2013, 85, 6775-6782.	6.5	189
41	Preparation and Enhanced Photoelectrochemical Performance of Coupled Bicomponent ZnOâ^'TiO ₂ Nanocomposites. Journal of Physical Chemistry C, 2008, 112, 117-122.	3.1	186
42	The graphene/nucleic acid nanobiointerface. Chemical Society Reviews, 2015, 44, 6954-6980.	38.1	181
43	DNA-Directed Self-Assembly of Graphene Oxide with Applications to Ultrasensitive Oligonucleotide Assay. ACS Nano, 2011, 5, 3817-3822.	14.6	177
44	Metal oxide hollow nanostructures: Fabrication and Li storage performance. Journal of Power Sources, 2013, 238, 376-387.	7.8	174
45	Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructuresviaself-assembly. Journal of Materials Chemistry, 2010, 20, 900-906.	6.7	167
46	Sensitive and Rapid Screening of T4 Polynucleotide Kinase Activity and Inhibition Based on Coupled Exonuclease Reaction and Graphene Oxide Platform. Analytical Chemistry, 2011, 83, 8396-8402.	6.5	163
47	Sensitive Electrochemical Aptamer Biosensor for Dynamic Cell Surface <i>N</i> Glycan Evaluation Featuring Multivalent Recognition and Signal Amplification on a Dendrimer–Graphene Electrode Interface. Analytical Chemistry, 2014, 86, 4278-4286.	6.5	158
48	Interfacial Bioelectrochemistry:  Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces. Journal of Physical Chemistry C, 2007, 111, 2351-2367.	3.1	155
49	Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chemical Communications, 2010, 46, 5882.	4.1	153
50	Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosensors and Bioelectronics, 2012, 35, 63-68.	10.1	150
51	A Hybrid Electrochemicalâ^'Colorimetric Sensing Platform for Detection of Explosives. Journal of the American Chemical Society, 2009, 131, 1390-1391.	13.7	146
52	V-Shaped Tin Oxide Nanostructures Featuring a Broad Photocurrent Signal: An Effective Visible-Light-Driven Photocatalyst. Small, 2006, 2, 1436-1439.	10.0	140
53	Fabrication of a Biocompatible and Conductive Platform Based on a Singleâ€5tranded DNA/Graphene Nanocomposite for Direct Electrochemistry and Electrocatalysis. Chemistry - A European Journal, 2010, 16, 8133-8139.	3.3	139
54	Carbon-coated hollow mesoporous FeP microcubes: an efficient and stable electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 8974-8977.	10.3	137

#	Article	IF	Citations
55	Co ₉ S ₈ nanoparticles anchored on nitrogen and sulfur dual-doped carbon nanosheets as highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. Nanoscale, 2017, 9, 12432-12440.	5.6	128
56	Duplex DNA/Graphene Oxide Biointerface: From Fundamental Understanding to Specific Enzymatic Effects. Advanced Functional Materials, 2012, 22, 3083-3088.	14.9	127
57	Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets. Biosensors and Bioelectronics, 2007, 23, 102-106.	10.1	125
58	Facile Synthesis of Wideâ∈Bandgap Fluorinated Graphene Semiconductors. Chemistry - A European Journal, 2011, 17, 8896-8903.	3.3	121
59	Facile "Spotâ€Heating―Synthesis of Carbon Dots/Carbon Nitride for Solar Hydrogen Evolution Synchronously with Contaminant Decomposition. Advanced Functional Materials, 2018, 28, 1706462.	14.9	121
60	Quantum dots sensitized graphene: In situ growth and application in photoelectrochemical cells. Electrochemistry Communications, 2010, 12, 483-487.	4.7	118
61	Molybdenum Carbideâ€Decorated Metallic Cobalt@Nitrogenâ€Doped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1704227.	10.0	114
62	Unique Hierarchical Mo ₂ C/C Nanosheet Hybrids as Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41314-41322.	8.0	112
63	A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte. Electrochimica Acta, 2006, 51, 1925-1931.	5.2	95
64	Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst, The, 2011, 136, 4732.	3.5	95
65	Three-Dimensional Nitrogen-Doped Graphene/MnO Nanoparticle Hybrids as a High-Performance Catalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 8032-8037.	3.1	92
66	Polycrystalline CoP/CoP ₂ Structures for Efficient Full Water Splitting. ChemElectroChem, 2018, 5, 701-707.	3.4	90
67	Hierarchically structured carbon nanocomposites as electrode materials for electrochemical energy storage, conversion and biosensor systems. Journal of Materials Chemistry, 2009, 19, 8707.	6.7	77
68	Energy-Efficient Photodegradation of Azo Dyes with TiO ₂ Nanoparticles Based on Photoisomerization and Alternate UVâ ^{^2} Visible Light. Environmental Science & Echnology, 2010, 44, 1107-1111.	10.0	77
69	Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction. Nanoscale, 2013, 5, 10839.	5.6	7 5
70	Titanium Nitride Nanocrystals on Nitrogenâ€Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry - A European Journal, 2013, 19, 14781-14786.	3.3	73
71	\hat{l}_{\pm} - and \hat{l}^3 -Fe2O3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction. Science China Materials, 2015, 58, 683-692.	6.3	73
72	Flawed MoO ₂ belts transformed from MoO ₃ on a graphene template for the hydrogen evolution reaction. Nanoscale, 2015, 7, 7040-7044.	5.6	73

#	Article	IF	Citations
73	Highâ€Efficient, Stable Electrocatalytic Hydrogen Evolution in Acid Media by Amorphous Fe <i>_x</i> P Coating Fe ₂ N Supported on Reduced Graphene Oxide. Small, 2018, 14, e1801717.	10.0	72
74	Preparation and aggregate state regulation of co-assembly graphene oxide-porphyrin composite Langmuir films via surface-modified graphene oxide sheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124023.	4.7	71
75	Efficient Analysis of Non-Polar Environmental Contaminants by MALDI-TOF MS with Graphene as Matrix. Journal of the American Society for Mass Spectrometry, 2011, 22, 1294-1298.	2.8	68
76	SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells. CrystEngComm, 2012, 14, 5177.	2.6	67
77	Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem, 2020, 7, 3578-3589.	3.4	63
78	Polyhedral AgBr Microcrystals with an Increased Percentage of Exposed {111} Facets as a Highly Efficient Visibleâ€Light Photocatalyst. Chemistry - A European Journal, 2012, 18, 4620-4626.	3.3	62
79	Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst, The, 2016, 141, 4541-4553.	3.5	58
80	Nanomaterials in carbohydrate biosensors. TrAC - Trends in Analytical Chemistry, 2014, 58, 54-70.	11.4	55
81	Photoelectrochemical study of organic–inorganic hybrid thin films via electrostatic layer-by-layer assembly. Electrochemistry Communications, 2007, 9, 2151-2156.	4.7	51
82	Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor. Nanoscale, 2014, 6, 11196-11203.	5.6	51
83	New role of graphene oxide as active hydrogen donor in the recyclable palladium nanoparticles catalyzed ullmann reaction in environmental friendly ionic liquid/supercritical carbon dioxide system. Journal of Materials Chemistry, 2011, 21, 3485.	6.7	50
84	Rapidly catalysis of oxygen evolution through sequential engineering of vertically layered FeNi structure. Nano Energy, 2018, 43, 359-367.	16.0	49
85	Fabrication of an electrochemical platform based on the self-assembly of graphene oxide–multiwall carbon nanotube nanocomposite and horseradish peroxidase: direct electrochemistry and electrocatalysis. Nanotechnology, 2011, 22, 494010.	2.6	45
86	Sucroseâ€Assisted Loading of LiFePO ₄ Nanoparticles on Graphene for Highâ€Performance Lithiumâ€Ion Battery Cathodes. Chemistry - A European Journal, 2013, 19, 5631-5636.	3.3	45
87	Co ₃ O ₄ Hollow Polyhedrons as Bifunctional Electrocatalysts for Reduction and Evolution Reactions of Oxygen. Particle and Particle Systems Characterization, 2016, 33, 887-895.	2.3	45
88	Highly reduced graphene oxide supported Pt nanocomposites as highly efficient catalysts for methanol oxidation. Chemical Communications, 2015, 51, 2418-2420.	4.1	37
89	Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin. Biosensors and Bioelectronics, 2015, 70, 404-410.	10.1	37
90	Molybdenum-doped mesoporous carbon/graphene composites as efficient electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 19969-19973.	10.3	37

#	Article	IF	Citations
91	Selective electrochemical detection of dopamine using nitrogen-doped graphene/manganese monoxide composites. RSC Advances, 2015, 5, 85065-85072.	3.6	32
92	Nitrogen-doped graphene nanosheets as high efficient catalysts for oxygen reduction reaction. Science Bulletin, 2012, 57, 3065-3070.	1.7	31
93	Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges. Nano Research, 2015, 8, 2946-2953.	10.4	30
94	Heating Treated Carbon Nanotubes As Highly Active Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta, 2015, 154, 177-183.	5.2	30
95	2 D Hybrid of Ni‣DH Chips on Carbon Nanosheets as Cathode of Zinc–Air Battery for Electrocatalytic Conversion of O ₂ into H ₂ O ₂ . ChemSusChem, 2020, 13, 1496-1503.	6.8	30
96	Interfacial Functionalization of TiO2 with Smart Polymers: pH-Controlled Switching of Photocurrent Direction. Journal of Physical Chemistry C, 2010, 114, 10478-10483.	3.1	29
97	Direct Exfoliation of Graphite to Graphene by a Facile Chemical Approach. Small, 2014, 10, 2233-2238.	10.0	28
98	Multiple-targeted graphene-based nanocarrier for intracellular imaging of mRNAs. Analytica Chimica Acta, 2017, 983, 1-8.	5.4	27
99	Pyrenebutyrate-functionalized graphene/poly(3-octyl-thiophene) nanocomposites based photoelectrochemical cell. Journal of Electroanalytical Chemistry, 2011, 656, 269-273.	3.8	23
100	Tunable stiffness of graphene oxide/polyacrylamide composite scaffolds regulates cytoskeleton assembly. Chemical Science, 2018, 9, 6516-6522.	7.4	22
101	Energy harvesting from enzymatic biowaste reaction through polyelectrolyte functionalized 2D nanofluidic channels. Chemical Science, 2016, 7, 3645-3648.	7.4	20
102	Direct electrochemistry and electrocatalysis of myoglobin covalently immobilized in mesopores cellular foams. Biosensors and Bioelectronics, 2010, 26, 846-849.	10.1	18
103	Formation of a graphene oxide–DNA duplex-based logic gate and sensor mediated by RecA–ssDNA nucleoprotein filaments. Chemical Communications, 2013, 49, 9971.	4.1	18
104	Ferric phosphide carbon nanocomposites emerging as highly active electrocatalysts for the hydrogen evolution reaction. Dalton Transactions, 2018, 47, 16011-16018.	3.3	12
105	Graphene–nucleic acid biointerface-engineered biosensors with tunable dynamic range. Journal of Materials Chemistry B, 2020, 8, 3623-3630.	5.8	10
106	Porous SnO ₂ nanocubes with controllable pore volume and their Li storage performance. RSC Advances, 2014, 4, 13250-13255.	3.6	9
107	Optical Imaging of Charges with Atomically Thin Molybdenum Disulfide. ACS Nano, 2019, 13, 2298-2306.	14.6	9
108	Low temperature synthesis of NiO/Co3O4 composite nanosheets as high performance Li-ion battery anode materials. Science Bulletin, 2012, 57, 4195-4198.	1.7	6

#	Article	IF	CITATIONS
109	More stable structures lead to improved cycle stability in photocatalysis and Li-ion batteries. RSC Advances, 2013, 3, 7933.	3.6	6
110	Self-Supported Ferric Phosphide Spherical Clusters as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 9472-9478.	1.5	6
111	Construction of H2O2-responsive asymmetric 2D nanofluidic channels with graphene and peroxidase-mimetic V2O5 nanowires. Analytical and Bioanalytical Chemistry, 2019, 411, 4041-4048.	3.7	6