
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1172453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Individual differences in learning ability are negatively linked to behavioural plasticity in a frequency-dependent game. Animal Behaviour, 2020, 159, 97-103.	1.9	5
2	Competitive advantage of rare behaviours induces adaptive diversity rather than social conformity in skill learning. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201259.	2.6	11
3	Follow (or don't follow) the crowd: Young children's conformity is influenced by norm domain and age. Journal of Experimental Child Psychology, 2018, 167, 222-233.	1.4	11
4	How does the reliability of a model affect children's choice to learn socially or individually?. Evolution and Human Behavior, 2017, 38, 341-349.	2.2	6
5	Selectivity in social and asocial learning: investigating the prevalence, effect and development of young children's learning preferences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150189.	4.0	33
6	Zebra finches scrounge more when patches vary in quality: experimental support of the linear operator learning rule. Animal Behaviour, 2015, 105, 181-186.	1.9	6
7	A unified modelling approach for producer–scrounger games in complex ecological conditions. Animal Behaviour, 2014, 96, 167-176.	1.9	34
8	How the cascading effects of a single behavioral trait can generate personality. Ecology and Evolution, 2014, 4, 3038-3045.	1.9	5
9	Speed–accuracy trade-off and its consequences in a scramble competition context. Animal Behaviour, 2014, 90, 255-262.	1.9	5
10	Zebra finches in poor condition produce more and consume more food in a producer–scrounger game. Behavioral Ecology, 2012, 23, 174-180.	2.2	18
11	Frequency-dependent payoffs and sequential decision-making favour consistent tactic use. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1977-1985.	2.6	20
12	Personality and body condition have additive effects on motivation to feed in Zebra Finches <i>Taeniopygia guttata</i> . Ibis, 2012, 154, 372-378.	1.9	33
13	The Effect of Exploration on the Use of Producer-Scrounger Tactics. PLoS ONE, 2012, 7, e49400.	2.5	9
14	Evidence of social information on food location in a ring-billed gull colony, but the birds do not use it. Animal Behaviour, 2012, 84, 175-182.	1.9	18
15	Personality affects zebra finch feeding success in a producer–scrounger game. Animal Behaviour, 2011, 82, 61-67.	1.9	91
16	Persistent individual differences in tactic use in a producer–scrounger game are group dependent. Animal Behaviour, 2011, 82, 811-816.	1.9	39
17	Individual differences in plasticity and sampling when playing behavioural games. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1223-1230.	2.6	40

18 When More Is More. Science, 2011, 334, 910-911.

12.6 1

LUC-ALAIN GIRALDEAU

#	Article	IF	CITATIONS
19	Travel time affects optimal diets in depleting patches. Behavioral Ecology and Sociobiology, 2010, 64, 593-598.	1.4	24
20	Family-related differences in social foraging tactic use in the zebra finch (Taeniopygia guttata). Behavioral Ecology and Sociobiology, 2010, 64, 1805-1811.	1.4	11
21	Predator inadvertent social information use favours reduced clumping of its prey. Oikos, 2010, 119, 286-291.	2.7	6
22	Learning behaviorally stable solutions to producer–scrounger games. Behavioral Ecology, 2010, 21, 343-348.	2.2	47
23	Learning in a game context: strategy choice by some keeps learning from evolving in others. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3609-3616.	2.6	48
24	Within-group relatedness can lead to higher levels of exploitation: a model and empirical test. Behavioral Ecology, 2010, 21, 843-850.	2.2	33
25	Group size effect in nutmeg mannikin: between-individuals behavioral differences but same plasticity. Behavioral Ecology, 2010, 21, 684-689.	2.2	34
26	Does Foraging Behaviour Affect Female Mate Preferences and Pair Formation in Captive Zebra Finches?. PLoS ONE, 2010, 5, e14340.	2.5	3
27	Group size effect caused by food competition in nutmeg mannikins (Lonchura punctulata). Behavioral Ecology, 2009, 20, 421-425.	2.2	30
28	Persuasive companions can be wrong: the use of misleading social information in nutmeg mannikins. Behavioral Ecology, 2009, 20, 1217-1222.	2.2	84
29	Video playback and social foraging: simulated companions produce the group size effect in nutmeg mannikins. Animal Behaviour, 2009, 78, 961-966.	1.9	19
30	Finding the evolutionarily stable learning rule for frequency-dependent foraging. Animal Behaviour, 2009, 78, 1343-1350.	1.9	41
31	Testing competing measures of profitability for mobile resources. Oecologia, 2009, 158, 757-764.	2.0	32
32	Testing dynamic varianceâ€sensitive foraging using individual differences in basal metabolic rates of zebra finches. Oikos, 2009, 118, 545-552.	2.7	46
33	Largeâ€scale Input Matching by Urban Feral Pigeons (<i>Columba livia</i>). Ethology, 2009, 115, 707-712.	1.1	7
34	The evolution of social learning rules: Payoff-biased and frequency-dependent biased transmission. Journal of Theoretical Biology, 2009, 260, 210-219.	1.7	136
35	Aggregations from using inadvertent social information: a form of ideal habitat selection. Ecography, 2009, 32, 143-152.	4.5	34
	Foreging Ion't Depleted Foreging: Pelawier and Feelery, David W. Stephene, Joel S. Brown, and Depeld		

Foraging Isn't Depleted:Foraging: Behavior and Ecology. David W. Stephens , Joel S. Brown , and Ronald C. Ydenberg , eds. University of Chicago Press, Chicago, 2007. 576 pp., illus. \$99.00 (ISBN 9780226772639) Tj ETQq0 0 0 rg&T /Overloo 36

#	Article	IF	CITATIONS
37	Evidence against maximization of gross rate of seed delivery to the burrow in food-hoarding eastern chipmunks, Tamias striatus. Animal Behaviour, 2008, 75, 655-661.	1.9	7
38	Conspecific presence makes exploiting cryptic prey more difficult in wild-caught nutmeg mannikins. Animal Behaviour, 2008, 75, 1101-1108.	1.9	8
39	Song complexity correlates with learning ability in zebra finch males. Animal Behaviour, 2008, 76, 1735-1741.	1.9	163
40	Chapter 2 Social Foraging and the Study of Exploitative Behavior. Advances in the Study of Behavior, 2008, 38, 59-104.	1.6	96
41	Can a restrictive definition lead to biases and tautologies?. Behavioral and Brain Sciences, 2007, 30, 411-412.	0.7	7
42	Wild Carib grackles play a producer scrounger game. Behavioral Ecology, 2007, 18, 916-921.	2.2	50
43	Scrounging behavior regulates population dynamics. Oikos, 2007, 116, 533-539.	2.7	21
44	Food sharing among retaliators: sequential arrivals and information asymmetries. Behavioral Ecology and Sociobiology, 2007, 62, 263-271.	1.4	14
45	Inadvertent social information in breeding site selection of natal dispersing birds. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 349-355.	2.6	154
46	Intensity of interference affects the distribution of house sparrows, Passer domesticus, at food patches. Animal Behaviour, 2006, 71, 965-970.	1.9	12
47	Prey crypticity reduces the proportion of group members searching for food. Animal Behaviour, 2006, 71, 1183-1189.	1.9	17
48	Testing central place foraging in eastern chipmunks, Tamias striatus, by altering loading functions. Animal Behaviour, 2006, 71, 1447-1453.	1.9	10
49	Risky decisions: a test of risk sensitivity in socially foraging flocks of Lonchura punctulata. Behavioral Ecology, 2005, 16, 8-14.	2.2	27
50	FIGHTING FOR RESOURCES: THE ECONOMICS OF DEFENSE AND APPROPRIATION. Ecology, 2005, 86, 3-11.	3.2	47
51	Information and its use by animals in evolutionary ecology. Trends in Ecology and Evolution, 2005, 20, 187-193.	8.7	1,143
52	Introduction: Ecology and the Central Nervous System. Brain, Behavior and Evolution, 2004, 63, 193-196.	1.7	3
53	Reduced resource defence in an uncertain world: an experimental test using captive nutmeg mannikins. Animal Behaviour, 2004, 68, 21-25.	1.9	9
54	Nutmeg mannikins (Lonchura punctulata) reduce their feeding rates in response to simulated competition. Oecologia, 2004, 139, 150-156.	2.0	13

#	Article	IF	CITATIONS
55	Distraction Sneakers Decrease the Expected Level of Aggression within Groups: A Gameâ€Theoretic Model. American Naturalist, 2004, 164, E32-E45.	2.1	15
56	Public Information: From Nosy Neighbors to Cultural Evolution. Science, 2004, 305, 487-491.	12.6	1,378
57	Incompatibility between antipredatory vigilance and scrounger tactic in nutmeg mannikins, Lonchura punctulata. Animal Behaviour, 2003, 66, 657-664.	1.9	26
58	Resource defense in a group-foraging context. Behavioral Ecology, 2003, 14, 2-9.	2.2	66
59	The Forager's Dilemma: Food Sharing and Food Defense as Riskâ€ S ensitive Foraging Options. American Naturalist, 2003, 162, 768-779.	2.1	26
60	Producer-Scrounger Games in a Spatially Explicit World: Tactic Use Influences Flock Geometry of Spice Finches. Ethology, 2001, 107, 249-257.	1.1	32
61	Social influences on foraging in vertebrates: causal mechanisms and adaptive functions. Animal Behaviour, 2001, 61, 3-15.	1.9	592
62	Head position as an indicator of producer and scrounger tactics in a ground-feeding bird. Animal Behaviour, 2001, 61, 895-903.	1.9	134
63	THE EFFECT OF HANDLING TIME ON INTERFERENCE AMONG HOUSE SPARROWS FORAGING AT DIFFERENT SEED DENSITIES. Behaviour, 2001, 138, 597-614.	0.8	35
64	Experimental evidence that group foragers can converge on predicted producer–scrounger equilibria. Animal Behaviour, 2000, 60, 341-350.	1.9	121
65	The effect of dominance hierarchy on the use of alternative foraging tactics: a phenotype-limited producing-scrounging game. Behavioral Ecology and Sociobiology, 1998, 42, 217-223.	1.4	177
66	Patch exploitation in a producer-scrounger system: test of a hypothesis using flocks of spice finches (Lonchura punctulata). Behavioral Ecology, 1997, 8, 54-59.	2.2	45
67	Patch departure decisions by spice finches foraging singly or in groups. Animal Behaviour, 1997, 54, 967-977.	1.9	42
68	Producer–scrounger foraging games in starlings: a test of rate-maximizing and risk-sensitive models. Animal Behaviour, 1996, 51, 773-783.	1.9	63
69	Vicarious sampling: the use of personal and public information by starlings foraging in a simple patchy environment. Behavioral Ecology and Sociobiology, 1996, 38, 105-114.	1.4	156
70	The empirical question of thresholds and mechanisms of mate choice. Evolutionary Ecology, 1996, 10, 447-455.	1.2	26
71	Mating tactics in external fertilizers when sperm is limited. Behavioral Ecology, 1996, 7, 19-23.	2.2	45
72	Patch assessment in foraging flocks of European starlings: evidence for the use of public information. Behavioral Ecology, 1995, 6, 65-72.	2.2	124

#	Article	IF	CITATIONS
73	Resource Consumption Variance Within and Among Individuals: On Coloniality in Spiders. Ecology, 1995, 76, 196-205.	3.2	45
74	Public information cues affect the scrounging decisions of starlings. Animal Behaviour, 1995, 49, 1617-1626.	1.9	44
75	Interference competition in central place foragers: the effect of imposed waiting on patch-use decisions of eastern chipmunks, Tamias striatus. Behavioral Ecology, 1994, 5, 237-244.	2.2	11
76	Social foraging: individual learning and cultural transmission of innovations. Behavioral Ecology, 1994, 5, 35-43.	2.2	84
77	A test of the producer-scrounger foraging game in captive flocks of spice finches, Loncbura punctulata. Behavioral Ecology and Sociobiology, 1994, 34, 251-256.	1.4	96
78	Cultural transmission in pigeons is affected by the number of tutors and bystanders present. Animal Behaviour, 1994, 47, 331-337.	1.9	102
79	The effect of competitors and distance on central place foraging eastern chipmunks, Tamias striatus. Animal Behaviour, 1994, 47, 621-632.	1.9	41
80	Genetic relatedness and group size in an aggregation economy. Evolutionary Ecology, 1993, 7, 429-438.	1.2	57
81	Patch estimation by group foragers: what information is used?. Animal Behaviour, 1993, 45, 721-728.	1.9	84
82	Producers, Scroungers, and Group Foraging. American Naturalist, 1991, 137, 847-863.	2.1	297
83	Social foraging in cliff swallows: a critique. Animal Behaviour, 1990, 39, 1213-1214.	1.9	2
84	Do lions hunt in group sizes that maximize Hunters' daily food returns?. Animal Behaviour, 1988, 36, 611-613.	1.9	18
85	Individual diet differences in feral pigeons: Evidence for resource partitioning. Animal Behaviour, 1987, 35, 1902-1903.	1.9	25
86	Scrounging prevents cultural transmission of food-finding behaviour in pigeons. Animal Behaviour, 1987, 35, 387-394.	1.9	205
87	The Center-Edge Effect: The Result of a War of Attrition between Territorial Contestants?. Auk, 1987, 104, 535-538.	1.4	48
88	Exchangeable producer and scrounger roles in a captive flock of feral pigeons: a case for the skill pool effect. Animal Behaviour, 1986, 34, 797-803.	1.9	128
89	Individual feeding preferences in feral groups of rock doves. Canadian Journal of Zoology, 1985, 63, 189-191.	1.0	31
90	Optimal group size can be stable: A reply to sibly. Animal Behaviour, 1985, 33, 666-667.	1.9	46

#	Article	IF	CITATIONS
91	Daily feeding site use of urban pigeons. Canadian Journal of Zoology, 1984, 62, 1425-1428.	1.0	20
92	Group Foraging: The Skill Pool Effect and Frequency-Dependent Learning. American Naturalist, 1984, 124, 72-79.	2.1	120
93	The marginal value theorem: A quantitative test using load size variation in a central place forager, the Eastern chipmunk, Tamias striatus. Animal Behaviour, 1982, 30, 1036-1042.	1.9	80