Angela L Tyner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1172299/publications.pdf

Version: 2024-02-01

94433 102487 5,163 68 37 66 citations h-index g-index papers 69 69 69 6198 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Targeting protein tyrosine kinase 6 in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188432.	7.4	8
2	Protein tyrosine kinase 6 signaling in prostate cancer. American Journal of Clinical and Experimental Urology, 2020, 8, 1-8.	0.4	7
3	Vemurafenib Inhibits Active PTK6 in <i>PTEN</i> Invariant Indian Cells (Invariant Indian Cells) Wolecular Cancer Therapeutics, 2019, 18, 937-946.	4.1	7
4	PTEN is a protein phosphatase that targets active PTK6 and inhibits PTK6 oncogenic signaling in prostate cancer. Nature Communications, 2017, 8, 1508.	12.8	71
5	Kinase-Dependent and -Independent Roles for PTK6 in Colon Cancer. Molecular Cancer Research, 2016, 14, 563-573.	3.4	19
6	Brk/Protein Tyrosine Kinase 6 Phosphorylates p27 ^{KIP1} , Regulating the Activity of Cyclin D–Cyclin-Dependent Kinase 4. Molecular and Cellular Biology, 2015, 35, 1506-1522.	2.3	41
7	Protein Tyrosine Kinase 6 Regulates UVB-Induced Signaling and Tumorigenesis in Mouse Skin. Journal of Investigative Dermatology, 2015, 135, 2492-2501.	0.7	11
8	PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors. Oncotarget, 2014, 5, 6038-6048.	1.8	26
9	PTK6 Activation at the Membrane Regulates Epithelial–Mesenchymal Transition in Prostate Cancer. Cancer Research, 2013, 73, 5426-5437.	0.9	39
10	Targeting FoxM1 Effectively Retards p53-Null Lymphoma and Sarcoma. Molecular Cancer Therapeutics, 2013, 12, 759-767.	4.1	20
11	Contextâ€specific protein tyrosine kinase 6 (<scp>PTK</scp> 6) signalling in prostate cancer. European Journal of Clinical Investigation, 2013, 43, 397-404.	3.4	32
12	Protein-tyrosine Kinase 6 Promotes Peripheral Adhesion Complex Formation and Cell Migration by Phosphorylating p130 CRK-associated Substrate*. Journal of Biological Chemistry, 2012, 287, 148-158.	3.4	33
13	Targeting Protein Tyrosine Kinase 6 Enhances Apoptosis of Colon Cancer Cells following DNA Damage. Molecular Cancer Therapeutics, 2012, 11, 2311-2320.	4.1	16
14	Disruption of the Mouse Protein Tyrosine Kinase 6 Gene Prevents STAT3 Activation and Confers Resistance to Azoxymethane. Gastroenterology, 2011, 141, 1371-1380.e2.	1.3	19
15	Deregulation of FoxM1b leads to tumour metastasis. EMBO Molecular Medicine, 2011, 3, 21-34.	6.9	127
16	<i>FoxM1</i> in Tumorigenicity of the Neuroblastoma Cells and Renewal of the Neural Progenitors. Cancer Research, 2011, 71, 4292-4302.	0.9	80
17	The Alternative Splice Variant of Protein Tyrosine Kinase 6 Negatively Regulates Growth and Enhances PTK6-Mediated Inhibition of \hat{l}^2 -Catenin. PLoS ONE, 2011, 6, e14789.	2.5	23
18	Building a better understanding of the intracellular tyrosine kinase PTK6 — BRK by BRK. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 66-73.	7.4	72

#	Article	IF	Citations
19	Negative regulation of the oncogenic transcription factor FoxM1 by thiazolidinediones and mithramycin. Cancer Biology and Therapy, 2010, 9, 1008-1016.	3.4	38
20	Protein Tyrosine Kinase 6 Directly Phosphorylates AKT and Promotes AKT Activation in Response to Epidermal Growth Factor. Molecular and Cellular Biology, 2010, 30, 4280-4292.	2.3	57
21	Cytoplasmic retention of protein tyrosine kinase 6 promotes growth of prostate tumor cells. Cell Cycle, 2010, 9, 4190-4199.	2.6	28
22	Identification of \hat{l}^2 -catenin as a target of the intracellular tyrosine kinase PTK6. Journal of Cell Science, 2010, 123, 236-245.	2.0	49
23	A Conserved Phosphorylation Site within the Forkhead Domain of FoxM1B Is Required for Its Activation by Cyclin-CDK1. Journal of Biological Chemistry, 2009, 284, 30695-30707.	3.4	77
24	RAKing in AKT: A tumor suppressor function for the intracellular tyrosine kinase FRK. Cell Cycle, 2009, 8, 2728-2732.	2.6	35
25	FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO Journal, 2009, 28, 2908-2918.	7.8	204
26	Reduced susceptibility to azoxymethane-induced aberrant crypt foci formation and colon cancer in growth hormone deficient rats. Growth Hormone and IGF Research, 2009, 19, 447-456.	1.1	13
27	Induction of Protein Tyrosine Kinase 6 in Mouse Intestinal Crypt Epithelial Cells Promotes DNA Damage–Induced Apoptosis. Gastroenterology, 2009, 137, 945-954.	1.3	40
28	Conditionally immortalized colonic epithelial cell line from a <i>Ptk</i> 6 null mouse that polarizes and differentiates <i>in vitro</i> . Journal of Gastroenterology and Hepatology (Australia), 2008, 23, 1119-1124.	2.8	23
29	FoxM1 Regulates Transcription of JNK1 to Promote the G1/S Transition and Tumor Cell Invasiveness. Journal of Biological Chemistry, 2008, 283, 20770-20778.	3.4	119
30	FoxM1 Regulates Growth Factor-induced Expression of Kinase-interacting Stathmin (KIS) to Promote Cell Cycle Progression. Journal of Biological Chemistry, 2008, 283, 453-460.	3.4	51
31	Functions of p21 and p27 in the regenerating epithelial linings of the mouse small and large intestine. Cancer Biology and Therapy, 2008, 7, 873-879.	3.4	7
32	Anaphase-Promoting Complex/Cyclosome-Cdh1-Mediated Proteolysis of the Forkhead Box M1 Transcription Factor Is Critical for Regulated Entry into S Phase. Molecular and Cellular Biology, 2008, 28, 5162-5171.	2.3	103
33	Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. American Journal of Physiology - Renal Physiology, 2007, 292, G66-G75.	3.4	146
34	In Memory of Robert H. Costa (1957–2006). Gastroenterology, 2007, 132, 1432-1433.	1.3	0
35	Differential Regulation of D-Type Cyclins in the Mouse Intestine. Cell Cycle, 2006, 5, 180-183.	2.6	27
36	Protein Tyrosine Kinase 6 Negatively Regulates Growth and Promotes Enterocyte Differentiation in the Small Intestine. Molecular and Cellular Biology, 2006, 26, 4949-4957.	2.3	76

#	Article	IF	CITATIONS
37	Inhibition of colon cancer cell proliferation by the dietary compound conjugated linoleic acid is mediated by the CDK inhibitor p21CIP1/WAF1. Journal of Cellular Physiology, 2005, 205, 107-113.	4.1	58
38	Tyrosine Phosphorylation of Sam68 by Breast Tumor Kinase Regulates Intranuclear Localization and Cell Cycle Progression. Journal of Biological Chemistry, 2005, 280, 38639-38647.	3.4	119
39	The Intracellular Tyrosine Kinase Brk Sensitizes Nontransformed Cells to Inducers of Apoptosis. Cell Cycle, 2005, 4, 1239-1246.	2.6	32
40	The Nuclear Tyrosine Kinase BRK/Sik Phosphorylates and Inhibits the RNA-binding Activities of the Sam68-like Mammalian Proteins SLM-1 and SLM-2. Journal of Biological Chemistry, 2004, 279, 54398-54404.	3.4	75
41	Histochemical examination of periodontal junctional epithelium in p21/p27 double knockout mice. European Journal of Oral Sciences, 2004, 112, 253-258.	1.5	10
42	Constitutive expression of E2F-1 leads to p21-dependent cell cycle arrest in S phase of the cell cycle. Oncogene, 2004, 23, 4173-4176.	5.9	96
43	A novel p21WAF1/CIP1 transcript is highly dependent on p53 for its basal expression in mouse tissues. Oncogene, 2004, 23, 8154-8157.	5.9	15
44	Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon. Oncogene, 2004, 23, 8128-8134.	5.9	78
45	Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene, 2003, 22, 4212-4220.	5.9	120
46	The Cdk Inhibitor p21 Is Required for Necrosis, but It Inhibits Apoptosis following Toxin-induced Liver Injury. Journal of Biological Chemistry, 2003, 278, 30348-30355.	3.4	38
47	Conjugated linoleic acid inhibits cell proliferation and ErbB3 signaling in HT-29 human colon cell line. American Journal of Physiology - Renal Physiology, 2003, 284, G996-G1005.	3.4	113
48	Brk, Srm, Frk, and Src42A Form a Distinct Family of Intracellular Src-Like Tyrosine Kinases. Oncology Research, 2003, 13, 409-419.	1.5	101
49	p21 Functions to Maintain Quiescence of p27-deficient Hepatocytes. Journal of Biological Chemistry, 2002, 277, 41417-41422.	3.4	33
50	The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Molecular Cancer Therapeutics, 2002, 1, 639-49.	4.1	676
51	A Novel P53-Related Activity in a Colon Adenocarcinoma Cell Line With Mutant P53. Scientific World Journal, The, 2001, 1, 36-36.	2.1	1
52	Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene, 2001, 20, 2587-2599.	5.9	122
53	A role for E2F1 in Ras activation of p21(WAF1/CIP1) transcription. Oncogene, 2000, 19, 961-964.	5.9	49
54	Sp1 and Sp3 activate p21 (WAF1/CIP1) gene transcription in the Caco-2 colon adenocarcinoma cell line. Oncogene, 2000, 19, 5182-5188.	5.9	72

#	Article	IF	CITATIONS
55	Sik (BRK) Phosphorylates Sam68 in the Nucleus and Negatively Regulates Its RNA Binding Ability. Molecular and Cellular Biology, 2000, 20, 6114-6126.	2.3	143
56	Transcriptional Regulation of the p21(WAF1/CIP1)Gene. Experimental Cell Research, 1999, 246, 280-289.	2.6	602
57	Activation and repression of p21WAF1/CIP1 transcription by RB binding proteins. Oncogene, 1998, 17, 3463-3469.	5.9	69
58	Ryk is expressed in a differentiation-specific manner in epithelial tissues and is strongly induced in decidualizing uterine stroma. Oncogene, 1998, 17, 3435-3444.	5.9	15
59	The Growth-Regulatory Role of p21 (WAF1/CIP1). Progress in Molecular and Subcellular Biology, 1998, 20, 43-71.	1.6	44
60	p21Negative Regulator of the Cell Cycle. Experimental Biology and Medicine, 1996, 213, 138-149.	2.4	331
61	p21 (WAF1/CIP1) Expression Is Induced in Newly Nondividing Cells in Diverse Epithelia and during Differentiation of the Caco-2 Intestinal Cell Line. Experimental Cell Research, 1996, 227, 171-181.	2.6	124
62	Developmental Regulation of \hat{l}_{\pm} -Fetoprotein Expression in Intestinal Epithelial Cells of Transgenic Mice. Developmental Biology, 1995, 168, 395-405.	2.0	7
63	Laminin receptor expression in rat intestine and liver during development and differentiation. Gastroenterology, 1994, 107, 764-772.	1.3	24
64	The zonal expression of \hat{l}_{\pm} -fetoprotein transgenes in the livers of adult mice. Developmental Dynamics, 1992, 195, 55-66.	1.8	23
65	Novel proteins belonging to the troponin C superfamily are encoded by a set of mRNAs in sea urchin embryos. Cell, 1984, 36, 663-671.	28.9	73
66	A Family of mRNAs Expressed in the Dorsal Ectoderm of Sea Urchin Embryos. , 1984, , 131-140.		1
67	A family of proteins accumulating in ectoderm of sea urchin embryos specified by two related cDNA clones. Developmental Biology, 1982, 91, 317-324.	2.0	43
68	Accumulation in embryogenesis of five mRNAs enriched in the ectoderm of the sea urchin pluteus. Developmental Biology, 1981, 87, 308-318.	2.0	112