Joseph Pogliano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11715910/publications.pdf

Version: 2024-02-01

17	1,210	15	17
papers	citations	h-index	g-index
17	17	17	1149
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Genetic Determinants Enabling Medium-Dependent Adaptation to Nafcillin in Methicillin-Resistant Staphylococcus aureus. MSystems, 2020, 5, .	3.8	8
2	SCH79797 improves outcomes in experimental bacterial pneumonia by boosting neutrophil killing and direct antibiotic activity. Journal of Antimicrobial Chemotherapy, 2018, 73, 1586-1594.	3.0	18
3	Classical \hat{I}^2 -Lactamase Inhibitors Potentiate the Activity of Daptomycin against Methicillin-Resistant Staphylococcus aureus and Colistin against Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	18
4	Cefazolin and Ertapenem, a Synergistic Combination Used To Clear Persistent Staphylococcus aureus Bacteremia. Antimicrobial Agents and Chemotherapy, 2016, 60, 6609-6618.	3.2	34
5	Penicillin Binding Protein 1 Is Important in the Compensatory Response of Staphylococcus aureus to Daptomycin-Induced Membrane Damage and Is a Potential Target for β-Lactam–Daptomycin Synergy. Antimicrobial Agents and Chemotherapy, 2016, 60, 451-458.	3.2	45
6	<i>In Vitro</i> Activity of Daptomycin in Combination with \hat{l}^2 -Lactams, Gentamicin, Rifampin, and Tigecycline against Daptomycin-Nonsusceptible Enterococci. Antimicrobial Agents and Chemotherapy, 2015, 59, 4279-4288.	3.2	39
7	Examining the Use of Ceftaroline in the Treatment of Streptococcus pneumoniae Meningitis with Reference to Human Cathelicidin LL-37. Antimicrobial Agents and Chemotherapy, 2015, 59, 2428-2431.	3.2	22
8	Differential Effects of Penicillin Binding Protein Deletion on the Susceptibility of Enterococcus faecium to Cationic Peptide Antibiotics. Antimicrobial Agents and Chemotherapy, 2015, 59, 6132-6139.	3.2	3
9	Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. Journal of Molecular Medicine, 2014, 92, 139-149.	3.9	121
10	Antimicrobial Salvage Therapy for Persistent Staphylococcal Bacteremia Using Daptomycin Plus Ceftaroline. Clinical Therapeutics, 2014, 36, 1317-1333.	2.5	151
11	Heterogeneity of <i>mprF</i> Sequences in Methicillin-Resistant Staphylococcus aureus Clinical Isolates: Role in Cross-Resistance between Daptomycin and Host Defense Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2014, 58, 7462-7467.	3.2	59
12	Potent synergy of ceftobiprole plus daptomycin against multiple strains of Staphylococcus aureus with various resistance phenotypes. Journal of Antimicrobial Chemotherapy, 2014, 69, 3006-3010.	3.0	50
13	Ceftaroline Restores Daptomycin Activity against Daptomycin-Nonsusceptible Vancomycin-Resistant Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2014, 58, 1494-1500.	3.2	83
14	Ceftaroline Increases Membrane Binding and Enhances the Activity of Daptomycin against Daptomycin-Nonsusceptible Vancomycin-Intermediate Staphylococcus aureus in a Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2013, 57, 66-73.	3.2	118
15	Treatment of High-Level Gentamicin-Resistant Enterococcus faecalis Endocarditis with Daptomycin plus Ceftaroline. Antimicrobial Agents and Chemotherapy, 2013, 57, 4042-4045.	3.2	62
16	Ampicillin Enhances Daptomycin- and Cationic Host Defense Peptide-Mediated Killing of Ampicillin- and Vancomycin-Resistant Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2012, 56, 838-844.	3.2	150
17	Use of Antistaphylococcal Â-Lactams to Increase Daptomycin Activity in Eradicating Persistent Bacteremia Due to Methicillin-Resistant Staphylococcus aureus: Role of Enhanced Daptomycin Binding. Clinical Infectious Diseases, 2011, 53, 158-163.	5.8	229