
Xiaocui Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1171422/publications.pdf Version: 2024-02-01

Хиосин Ми

#	Article	IF	CITATIONS
1	A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Scientific Data, 2017, 4, 170165.	5.3	335
2	Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change, 2021, 11, 442-448.	18.8	166
3	Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sensing of Environment, 2020, 247, 111951.	11.0	105
4	Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Science of the Total Environment, 2020, 711, 135183.	8.0	104
5	Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sensing of Environment, 2018, 206, 174-188.	11.0	98
6	Global parameterization and validation of a twoâ€leaf light use efficiency model for predicting gross primary production across FLUXNET sites. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1045-1072.	3.0	93
7	Regional Crop Gross Primary Productivity and Yield Estimation Using Fused Landsat-MODIS Data. Remote Sensing, 2018, 10, 372.	4.0	92
8	TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22393-22398.	7.1	78
9	Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nature Sustainability, 2019, 2, 764-772.	23.7	71
10	Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Scientific Reports, 2016, 6, 39748.	3.3	57
11	Spatioâ€Temporal Convergence of Maximum Daily Lightâ€Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll. Geophysical Research Letters, 2018, 45, 3508-3519.	4.0	48
12	Quantifying annual changes in built-up area in complex urban-rural landscapes from analyses of PALSAR and Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124, 89-105.	11.1	42
13	Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010–2016, Oklahoma, USA. Agricultural Water Management, 2018, 204, 47-59.	5.6	38
14	Large cale Droughts Responsible for Dramatic Reductions of Terrestrial Net Carbon Uptake Over North America in 2011 and 2012. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2053-2071.	3.0	35
15	Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Scientific Reports, 2017, 7, 14963.	3.3	30
16	Spatiotemporal Consistency of Four Gross Primary Production Products and Solarâ€Induced Chlorophyll Fluorescence in Response to Climate Extremes Across CONUS in 2012. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3140-3161.	3.0	30
17	Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020. Remote Sensing of Environment, 2022, 278, 113087.	11.0	26
18	Enhanced gross primary production and evapotranspiration in juniperâ€encroached grasslands. Global Change Biology, 2018, 24, 5655-5667.	9.5	25

ΧιΑΟΟΙΙ Wu

#	Article	IF	CITATIONS
19	Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales. Remote Sensing, 2015, 7, 2238-2278.	4.0	23
20	Dynamical Downscaling of CO ₂ in 2016 Over the Contiguous United States Using WRFâ€VPRM, a Weatherâ€Biosphereâ€Onlineâ€Coupled Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001875.	3.8	21
21	Small anomalies in dry-season greenness and chlorophyll fluorescence for Amazon moist tropical forests during El Niño and La Niña. Remote Sensing of Environment, 2021, 253, 112196.	11.0	21
22	Globalâ€Scale Consistency of Spaceborne Vegetation Indices, Chlorophyll Fluorescence, and Photosynthesis. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006136.	3.0	21
23	Large spatial variation and stagnation of cropland gross primary production increases the challenges of sustainable grain production and food security in China. Science of the Total Environment, 2022, 811, 151408.	8.0	17
24	Assimilating remote sensing-based VPM GPP into the WOFOST model for improving regional winter wheat yield estimation. European Journal of Agronomy, 2022, 139, 126556.	4.1	17
25	Estimating site-specific optimum air temperature and assessing its effect on the photosynthesis of grasslands in mid- to high-latitudes. Environmental Research Letters, 2020, 15, 034064.	5.2	16
26	Modeling the Effects of Global and Diffuse Radiation on Terrestrial Gross Primary Productivity in China Based on a Two-Leaf Light Use Efficiency Model. Remote Sensing, 2020, 12, 3355.	4.0	12
27	Spatial-temporal dynamics of maize and soybean planted area, harvested area, gross primary production, and grain production in the Contiguous United States during 2008-2018. Agricultural and Forest Meteorology, 2021, 297, 108240.	4.8	12
28	Peak growing season patterns and climate extremes-driven responses of gross primary production estimated by satellite and process based models over North America. Agricultural and Forest Meteorology, 2021, 298-299, 108292.	4.8	12
29	Grassland Wildfires in the Southern Great Plains: Monitoring Ecological Impacts and Recovery. Remote Sensing, 2020, 12, 619.	4.0	9
30	Spatiotemporal Changes of Winter Wheat Planted and Harvested Areas, Photosynthesis and Grain Production in the Contiguous United States from 2008–2018. Remote Sensing, 2021, 13, 1735.	4.0	6
31	Modeling Gross Primary Production for Sunlit and Shaded Canopies Across an Evergreen and a Deciduous Site in Canada. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1859-1873.	6.3	5
32	Annual Maps of Forests in Australia from Analyses of Microwave and Optical Images with FAO Forest Definition. Journal of Remote Sensing, 2021, 2021, .	6.7	3