Kim A Heidenreich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11713501/publications.pdf Version: 2024-02-01

KIM A HEIDENDEICH

#	Article	IF	CITATIONS
1	Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits. Experimental Neurology, 2014, 256, 7-16.	4.1	41
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	IGF-I stimulates Rab7-RILP interaction during neuronal autophagy. Neuroscience Letters, 2011, 488, 112-117.	2.1	39
4	Lipid Mediators in Cerebral Spinal Fluid of Traumatic Brain Injured Patients. Journal of Trauma, 2011, 71, 1211-1218.	2.3	45
5	Insulin-like Growth Factor-I Prevents the Accumulation of Autophagic Vesicles and Cell Death in Purkinje Neurons by Increasing the Rate of Autophagosome-to-lysosome Fusion and Degradation. Journal of Biological Chemistry, 2009, 284, 20398-20407.	3.4	50
6	Injury-Related Production of Cysteinyl Leukotrienes Contributes to Brain Damage following Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 1977-1986.	3.4	34
7	Chapter 7 Liveâ€Cell Imaging of Autophagy Induction and Autophagosome‣ysosome Fusion in Primary Cultured Neurons. Methods in Enzymology, 2009, 453, 145-158.	1.0	32
8	Formation of eicosanoids, E2/D2 isoprostanes, and docosanoids following decapitation-induced ischemia, measured in high-energy-microwaved rat brain. Journal of Lipid Research, 2008, 49, 1990-2000.	4.2	71
9	Adhesion-Related Kinase Induction of Migration Requires Phosphatidylinositol-3-Kinase and Ras Stimulation of Rac Activity in Immortalized Gonadotropin-Releasing Hormone Neuronal Cells. Endocrinology, 2007, 148, 2806-2814.	2.8	48
10	Transcellular biosynthesis of cysteinyl leukotrienes in rat neuronal and glial cells. Journal of Neurochemistry, 2007, 103, 1310-1318.	3.9	32
11	Distinct mechanisms of neuronal apoptosis are triggered by antagonism of Bcl-2/Bcl-x(L) versus induction of the BH3-only protein Bim. Journal of Neurochemistry, 2005, 94, 22-36.	3.9	23
12	Inhibition of Rac GTPase triggers a c-Jun- and Bim-dependent mitochondrial apoptotic cascade in cerebellar granule neurons. Journal of Neurochemistry, 2005, 94, 1025-1039.	3.9	47
13	The p75 Neurotrophin Receptor Can Induce Autophagy and Death of Cerebellar Purkinje Neurons. Journal of Neuroscience, 2004, 24, 4498-4509.	3.6	94
14	Myocyte Enhancer Factor-2 Transcription Factors in Neuronal Differentiation and Survival. Molecular Neurobiology, 2004, 29, 155-166.	4.0	72
15	Glycogen Synthase Kinase-3β Phosphorylates Bax and Promotes Its Mitochondrial Localization during Neuronal Apoptosis. Journal of Neuroscience, 2004, 24, 9993-10002.	3.6	340
16	A myocyte enhancer factor 2D (MEF2D) kinase activated during neuronal apoptosis is a novel target inhibited by lithium. Journal of Neurochemistry, 2003, 85, 1488-1499.	3.9	42
17	Inactivation of the Myocyte Enhancer Factor-2 Repressor Histone Deacetylase-5 by Endogenous Ca2//Calmodulin-dependent Kinase II Promotes Depolarization-mediated Cerebellar Granule Neuron Survival. Journal of Biological Chemistry, 2003, 278, 41472-41481.	3.4	110
18	Molecular Mechanisms of Neuronal Cell Death. Annals of the New York Academy of Sciences, 2003, 991, 237-250.	3.8	19

KIM A HEIDENREICH

#	Article	lF	CITATIONS
19	Adhesion-related Kinase Repression of Gonadotropin-releasing Hormone Gene Expression Requires Rac Activation of the Extracellular Signal-regulated Kinase Pathway. Journal of Biological Chemistry, 2002, 277, 38133-38140.	3.4	41
20	Novel Mechanism for Gonadotropin-Releasing Hormone Neuronal Migration Involving Gas6/Ark Signaling to p38 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 2002, 22, 599-613.	2.3	123
21	Suppression of Death Receptor Signaling in Cerebellar Purkinje Neurons Protects Neighboring Granule Neurons from Apoptosis via an Insulin-like Growth Factor I-dependent Mechanism. Journal of Biological Chemistry, 2002, 277, 24546-24553.	3.4	25
22	Insulin-Like Growth Factor-I Blocks Bcl-2 Interacting Mediator of Cell Death (Bim) Induction and Intrinsic Death Signaling in Cerebellar Granule Neurons. Journal of Neuroscience, 2002, 22, 9287-9297.	3.6	142
23	IGF-I and bFGF Improve Dopamine Neuron Survival and Behavioral Outcome in Parkinsonian Rats Receiving Cultured Human Fetal Tissue Strands. Experimental Neurology, 2001, 168, 183-191.	4.1	36
24	Myocyte Enhancer Factor 2A and 2D Undergo Phosphorylation and Caspase-Mediated Degradation during Apoptosis of Rat Cerebellar Granule Neurons. Journal of Neuroscience, 2001, 21, 6544-6552.	3.6	116
25	Inhibitors of p38 MAP kinase increase the survival of transplanted dopamine neurons. Brain Research, 2001, 891, 185-196.	2.2	38
26	An Essential Role for Rac/Cdc42 GTPases in Cerebellar Granule Neuron Survival. Journal of Biological Chemistry, 2001, 276, 39123-39131.	3.4	75
27	Stimulation of M3 Muscarinic Receptors Induces Phosphorylation of the Cdc42 Effector Activated Cdc42Hs-associated Kinase-1 via a Fyn Tyrosine Kinase Signaling Pathway. Journal of Biological Chemistry, 2001, 276, 5622-5628.	3.4	46
28	Akt/Protein Kinase B Up-regulates Bcl-2 Expression through cAMP-response Element-binding Protein. Journal of Biological Chemistry, 2000, 275, 10761-10766.	3.4	710
29	Cyclic AMP Promotes Neuronal Survival by Phosphorylation of Glycogen Synthase Kinase 3β. Molecular and Cellular Biology, 2000, 20, 9356-9363.	2.3	352
30	Growth Arrest-Specific Gene 6 (Gas6)/Adhesion Related Kinase (Ark) Signaling Promotes Gonadotropin-Releasing Hormone Neuronal Survival via Extracellular Signal-Regulated Kinase (ERK) and Akt. Molecular Endocrinology, 1999, 13, 191-201.	3.7	121
31	Insulin-like Growth Factor I-mediated Activation of the Transcription Factor cAMP Response Element-binding Protein in PC12 Cells. Journal of Biological Chemistry, 1999, 274, 2829-2837.	3.4	111
32	Insulin-like Growth Factor-I Induces bcl-2 Promoter through the Transcription Factor cAMP-Response Element-binding Protein. Journal of Biological Chemistry, 1999, 274, 27529-27535.	3.4	179
33	Growth Arrest-Specific Gene 6 (Gas6)/Adhesion Related Kinase (Ark) Signaling Promotes Gonadotropin-Releasing Hormone Neuronal Survival via Extracellular Signal-Regulated Kinase (ERK) and Akt. Molecular Endocrinology, 1999, 13, 191-201.	3.7	32
34	Apoptosis Induced by Withdrawal of Trophic Factors Is Mediated by p38 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1997, 272, 20490-20494.	3.4	440
35	Growth Factors Rescue Embryonic Dopamine Neurons from Programmed Cell Death. Experimental Neurology, 1996, 140, 60-67.	4.1	69
36	Inhibition of p38 Mitogen-activated Protein Kinase by Insulin in Cultured Fetal Neurons. Journal of Biological Chemistry, 1996, 271, 9891-9894.	3.4	100

KIM A HEIDENREICH

#	Article	IF	CITATIONS
37	Insulin and IGF-I Receptor Signaling in Cultured Neurons. Annals of the New York Academy of Sciences, 1993, 692, 72-88.	3.8	55
38	Insulin and IGF-I receptor tyrosine kinases in neural tissue. Methods, 1992, 1, 232-239.	0.5	0
39	Glucose regulates the expression of Gi-proteins in cultured BC3H-1 myocytes. Biochemical and Biophysical Research Communications, 1992, 182, 1193-1200.	2.1	3
40	Insulin in the brain what is its role?. Trends in Endocrinology and Metabolism, 1991, 2, 9-12.	7.1	11
41	Insulin and Insulin-Like Growth Factors Stimulatein VivoReceptor Autophosphorylation and Tyrosine Phosphorylation of a 70K Substrate in Cultured Fetal Chick Neurons*. Endocrinology, 1991, 129, 301-311.	2.8	25
42	Pertussis toxin catalyzed ADP-ribosylation of a 41 kDa G-protein impairs insulin-stimulated glucose metabolism in Bc3H-1 myocytes. Journal of Cellular Physiology, 1990, 144, 538-545.	4.1	15
43	Insulin Receptors Mediate Growth Effects in Cultured Fetal Neurons. I. Rapid Stimulation of Protein Synthesis*. Endocrinology, 1989, 125, 1451-1457.	2.8	56
44	Insulin Receptors Mediate Growth Effects in Cultured Fetal Neurons. II. Activation of a Protein Kinase that Phosphorylates Ribosomal Protein S6*. Endocrinology, 1989, 125, 1458-1463.	2.8	40
45	Functional Properties of the Subtype of Insulin Receptor Found on Neurons. Journal of Neurochemistry, 1988, 51, 878-887.	3.9	63
46	Peptide mapping on Northern blot analyses of insulin receptors in brain and adipocytes. Molecular and Cellular Endocrinology, 1988, 56, 255-261.	3.2	8
47	Structural Evidence for a Subtype of Insulin Receptor in the Central Nervous System. , 1987, , 177-190.		2
48	Evidence for a subtype of insulin-like growth factor I receptor in brain. Regulatory Peptides, 1986, 15, 301-310.	1.9	42
49	Oligosaccharide Heterogeneity of Insulin Receptors. Comparison of N-Linked Glycosylation of Insulin Receptors in Adipocytes and Brain*. Endocrinology, 1986, 118, 1835-1842.	2.8	94
50	Structural and Functional Characteristics of Insulin Receptors in Rat Neuroblastoma Cells. Journal of Neurochemistry, 1985, 45, 1642-1648.	3.9	30