Tom M Fayle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11710875/publications.pdf

Version: 2024-02-01

35	2,234	24 h-index	34
papers	citations		g-index
36	36	36	3685
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The impacts of tropical mound-building social insects on soil properties vary between taxa and with anthropogenic habitat change. Applied Soil Ecology, 2022, 179, 104576.	4.3	7
2	Localised climate change defines ant communities in humanâ€modified tropical landscapes. Functional Ecology, 2021, 35, 1094-1108.	3.6	30
3	Elevation and leaf litter interact in determining the structure of ant communities on a tropical mountain. Biotropica, 2021, 53, 906-919.	1.6	9
4	Experiments with artificial nests provide evidence for ant community stratification and nest site limitation in a tropical forest. Biotropica, 2020, 52, 277-287.	1.6	18
5	Antâ€termite interactions: an important but underâ€explored ecological linkage. Biological Reviews, 2020, 95, 555-572.	10.4	66
6	Removing understory vegetation in oil palm agroforestry reduces ground-foraging ant abundance but not species richness. Basic and Applied Ecology, 2020, 48, 26-36.	2.7	18
7	Monitoring tropical insects in the 21st century. Advances in Ecological Research, 2020, 62, 295-330.	2.7	15
8	Logging of rainforest and conversion to oil palm reduces bioturbator diversity but not levels of bioturbation. Applied Soil Ecology, 2019, 144, 123-133.	4.3	21
9	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	9. 5	39
10	Forests and Their Canopies: Achievements and Horizons in Canopy Science. Trends in Ecology and Evolution, 2017, 32, 438-451.	8.7	182
11	Network reorganization and breakdown of an ant–plant protection mutualism with elevation. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162564.	2.6	32
12	<i>GlobalAnts</i> : a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 2017, 10, 5-20.	3.0	119
13	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1 1	1 0.78431 1.9	4 rgBT /Overl
14	Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecology Letters, 2016, 19, 1009-1022.	6.4	75
15	Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants. Ecology Letters, 2015, 18, 254-262.	6.4	35
16	Logging cuts the functional importance of invertebrates in tropical rainforest. Nature Communications, 2015, 6, 6836.	12.8	127
17	An ant–plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia, 2015, 178, 441-450.	2.0	19
18	Whole-ecosystem experimental manipulations of tropical forests. Trends in Ecology and Evolution, 2015, 30, 334-346.	8.7	46

#	Article	IF	CITATIONS
19	Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150418.	2.6	58
20	Riparian reserves within oil palm plantations conserve logged forest leaf litter ant communities and maintain associated scavenging rates. Journal of Applied Ecology, 2015, 52, 31-40.	4.0	36
21	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	1.9	178
22	Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodiversity and Conservation, 2014, 23, 2817-2832.	2.6	111
23	Trait-dependent declines of species following conversion of rain forest to oil palm plantations. Biodiversity and Conservation, 2013, 22, 253-268.	2.6	60
24	Ant mosaics occur in SE Asian oil palm plantation but not rain forest and are influenced by the presence of nestâ€sites and nonâ€native species. Ecography, 2013, 36, 1051-1057.	4.5	40
25	Optimizing Diversity Assessment Protocols for High Canopy Ants in Tropical Rain Forest. Biotropica, 2012, 44, 73-81.	1.6	16
26	Why are there more arboreal ant species in primary than in secondary tropical forests?. Journal of Animal Ecology, 2012, 81, 1103-1112.	2.8	113
27	Public goods, public services and byâ€product mutualism in an ant–fern symbiosis. Oikos, 2012, 121, 1279-1286.	2.7	14
28	Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3277-3291.	4.0	218
29	Distributional Patterns of Epiphytic Ferns are Explained by the Presence of Cryptic Species. Biotropica, 2011, 43, 6-7.	1.6	5
30	The conservation value of South East Asia's highly degraded forests: evidence from leaf-litter ants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3256-3264.	4.0	61
31	Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic and Applied Ecology, 2010, 11, 337-345.	2.7	155
32	Can the failure to punish promote cheating in mutualism?. Oikos, 2010, 119, 45-52.	2.7	24
33	The Effect of Rain Forest Canopy Architecture on the Distribution of Epiphytic Ferns (<i>Asplenium</i>) Tj ETQq1	1.6 ⁷⁸⁴³¹	_ 4ggBT/O∨
34	Oil Palm Research in Context: Identifying the Need for Biodiversity Assessment. PLoS ONE, 2008, 3, e1572.	2.5	63
35	Living Together in Novel Habitats: A Review of Land- Use Change Impacts on Mutualistic Ant- Plant Symbioses in Tropical Forests., 0,, 52-72.		1