Taro Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11710297/publications.pdf

Version: 2024-02-01

147726 161767 3,083 66 31 54 citations h-index g-index papers 67 67 67 3252 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Calpain-dependent Proteolytic Cleavage of the p35 Cyclin-dependent Kinase 5 Activator to p25. Journal of Biological Chemistry, 2000, 275, 17166-17172.	1.6	346
2	Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. Journal of Cell Biology, 2003, 163, 813-824.	2.3	182
3	Regulation of Mitochondrial Transport and Inter-Microtubule Spacing by Tau Phosphorylation at the Sites Hyperphosphorylated in Alzheimer's Disease. Journal of Neuroscience, 2012, 32, 2430-2441.	1.7	156
4	Truncation of CDK5 Activator p35 Induces Intensive Phosphorylation of Ser202/Thr205 of Human Tau. Journal of Biological Chemistry, 2002, 277, 44525-44530.	1.6	131
5	Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclineâ€dependent kinase 5 complexes. Journal of Neurochemistry, 2008, 106, 1325-1336.	2.1	101
6	In vivo regulation of glycogen synthase kinase $3\hat{l}^2$ activity in neurons and brains. Scientific Reports, 2017, 7, 8602.	1.6	90
7	Impairment of hippocampal long-term depression and defective spatial learning and memory in p35-/mice. Journal of Neurochemistry, 2005, 94, 917-925.	2.1	89
8	The Regulation of Cyclin-Dependent Kinase 5 Activity through the Metabolism of p35 or p39 Cdk5 Activator. NeuroSignals, 2003, 12, 221-229.	0.5	85
9	Casein kinase 2 is the major enzyme in brain that phosphorylates Ser129 of human αâ€synuclein: Implication for αâ€synucleinopathies. FEBS Letters, 2007, 581, 4711-4717.	1.3	84
10	Phosphorylation of Protein Phosphatase Inhibitor-1 by Cdk5. Journal of Biological Chemistry, 2001, 276, 14490-14497.	1.6	83
11	Developmental Regulation of the Proteolysis of the p35 Cyclin-Dependent Kinase 5 Activator by Phosphorylation. Journal of Neuroscience, 2003, 23, 1189-1197.	1.7	83
12	Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot–Marie–Tooth disease mutants. Human Molecular Genetics, 2006, 15, 943-952.	1.4	81
13	Tau Phosphorylation by Cyclin-dependent Kinase 5/p39 during Brain Development Reduces Its Affinity for Microtubules. Journal of Biological Chemistry, 2003, 278, 10506-10515.	1.6	78
14	Control of cyclin-dependent kinase 5 (Cdk5) activity by glutamatergic regulation of p35 stability. Journal of Neurochemistry, 2005, 93, 502-512.	2.1	78
15	Evidence for cdk5 as a Major Activity Phosphorylating Tau Protein in Porcine Brain Extract1. Journal of Biochemistry, 1995, 117, 741-749.	0.9	74
16	Suppression of Calpain-dependent Cleavage of the CDK5 Activator p35 to p25 by Site-specific Phosphorylation. Journal of Biological Chemistry, 2007, 282, 1687-1694.	1.6	65
17	Deletion of CDKAL1 Affects Mitochondrial ATP Generation and First-Phase Insulin Exocytosis. PLoS ONE, 2010, 5, e15553.	1.1	64
18	LMTK1/AATYK1 Is a Novel Regulator of Axonal Outgrowth That Acts via Rab11 in a Cdk5-Dependent Manner. Journal of Neuroscience, 2012, 32, 6587-6599.	1.7	58

#	Article	IF	CITATIONS
19	p25/Cyclin-dependent kinase 5 promotes the progression of cell death in nucleus of endoplasmic reticulum-stressed neurons. Journal of Neurochemistry, 2007, 102, 133-140.	2.1	54
20	Quantitative Measurement of in Vivo Phosphorylation States of Cdk5 Activator p35 by Phos-tag SDS-PAGE. Molecular and Cellular Proteomics, 2010, 9, 1133-1143.	2.5	53
21	Isomerase Pin1 Stimulates Dephosphorylation of Tau Protein at Cyclin-dependent Kinase (Cdk5)-dependent Alzheimer Phosphorylation Sites. Journal of Biological Chemistry, 2013, 288, 7968-7977.	1.6	52
22	Membrane Association Facilitates Degradation and Cleavage of the Cyclin-Dependent Kinase 5 Activators p35 and p39. Biochemistry, 2010, 49, 5482-5493.	1.2	48
23	In situ dephosphorylation of tau by protein phosphatase 2A and 2B in fetal rat primary cultured neurons. FEBS Letters, 1995, 376, 238-242.	1.3	47
24	Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biological Control, 2016, 92, 92-100.	1.4	45
25	Suppression of Mutant Huntingtin Aggregate Formation by Cdk5/p35 through the Effect on Microtubule Stability. Journal of Neuroscience, 2008, 28, 8747-8755.	1.7	41
26	Phosphorylation of Adult Type Sept5 (CDCrel-1) by Cyclin-dependent Kinase 5 Inhibits Interaction with Syntaxin-1. Journal of Biological Chemistry, 2007, 282, 7869-7876.	1.6	38
27	Okadaic Acid-Stimulated Degradation of p35, an Activator of CDK5, by Proteasome in Cultured Neurons. Biochemical and Biophysical Research Communications, 1998, 252, 775-778.	1.0	37
28	Phosphorylation of FTDP-17 Mutant tau by Cyclin-dependent Kinase 5 Complexed with p35, p25, or p39. Journal of Biological Chemistry, 2005, 280, 31522-31529.	1.6	37
29	Phosphorylation of Cyclin-dependent Kinase 5 (Cdk5) at Tyr-15 Is Inhibited by Cdk5 Activators and Does Not Contribute to the Activation of Cdk5. Journal of Biological Chemistry, 2014, 289, 19627-19636.	1.6	37
30	Cdk5 phosphorylation of its activators p35 and p39 determines subcellular location of the holokinase in a phosphorylation site-specific manner. Journal of Cell Science, 2012, 125, 3421-9.	1.2	34
31	Enhanced activation of Ca2+/Calmodulin-dependent protein kinase II upon downregulation of cyclin-dependent kinase 5-p35. Journal of Neuroscience Research, 2006, 84, 747-754.	1.3	33
32	In Vivo and in Vitro Phosphorylation at Ser-493 in the Glutamate (E)-segment of Neurofilament-H Subunit by Glycogen Synthase Kinase $3\hat{l}^2$. Journal of Biological Chemistry, 2002, 277, 36032-36039.	1.6	32
33	Cdk5-p39 is a labile complex with the similar substrate specificity to Cdk5-p35. Journal of Neurochemistry, 2007, 102, 1477-1487.	2.1	31
34	Small molecule inhibitor of type I transforming growth factor- \hat{l}^2 receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. Journal of Neuroscience Research, 2011, 89, 381-393.	1.3	31
35	LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes. Molecular Biology of the Cell, 2014, 25, 1755-1768.	0.9	31
36	Activation of latent cyclin-dependent kinase 5 (Cdk5)-p35 complexes by membrane dissociation. Journal of Neurochemistry, 2005, 94, 1535-1545.	2.1	30

#	Article	IF	Citations
37	Calpastatin, an endogenous calpain-inhibitor protein, regulates the cleavage of the Cdk5 activator p35 to p25. Journal of Neurochemistry, 2011, 117, 504-515.	2.1	30
38	Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. Journal of Biochemistry, 2017, 162, 335-342.	0.9	29
39	Accumulation of phosphorylated neurofilaments and increase in apoptosis-specific protein and phosphorylated c-Jun induced by proteasome inhibitors. Journal of Neuroscience Research, 2000, 62, 75-83.	1.3	27
40	Commitment of 1-Methyl-4-phenylpyrinidinium Ion-induced Neuronal Cell Death by Proteasome-mediated Degradation of p35 Cyclin-dependent Kinase 5 Activator. Journal of Biological Chemistry, 2009, 284, 26029-26039.	1.6	27
41	Tau isoform expression and phosphorylation in marmoset brains. Journal of Biological Chemistry, 2019, 294, 11433-11444.	1.6	27
42	Apoptosis-associated tyrosine kinase is a Cdk5 activator p35 binding protein. Biochemical and Biophysical Research Communications, 2003, 310, 398-404.	1.0	25
43	Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Human Molecular Genetics, 2019, 28, 3062-3071.	1.4	25
44	Microtubule affinity–regulating kinase 4 with an Alzheimer's disease-related mutation promotes tau accumulation and exacerbates neurodegeneration. Journal of Biological Chemistry, 2020, 295, 17138-17147.	1.6	25
45	Effect of Pin1 or Microtubule Binding on Dephosphorylation of FTDP-17 Mutant Tau. Journal of Biological Chemistry, 2009, 284, 16840-16847.	1.6	22
46	The LMTK1-TBC1D9B-Rab11A Cascade Regulates Dendritic Spine Formation via Endosome Trafficking. Journal of Neuroscience, 2019, 39, 9491-9502.	1.7	19
47	Regulation of the interaction of Disabledâ€1 with CIN85 by phosphorylation with Cyclinâ€dependent kinase 5. Genes To Cells, 2007, 12, 1315-1327.	0.5	17
48	AATYK1A phosphorylation by Cdk5 regulates the recycling endosome pathway. Genes To Cells, 2010, 15, 783-797.	0.5	17
49	Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination. Journal of Biological Chemistry, 2016, 291, 4649-4657.	1.6	17
50	Compatibility of foliage-dwelling predatory mites and mycoinsecticides, and their combined efficacy against western flower thrips Frankliniella occidentalis. Journal of Pest Science, 2018, 91, 1291-1300.	1.9	16
51	Disulfide bond formation in microtubule-associated tau protein promotes tau accumulation and toxicity <i>in vivo</i> . Human Molecular Genetics, 2021, 30, 1955-1967.	1.4	15
52	Regulation of membrane association and kinase activity of Cdk5–p35 by phosphorylation of p35. Journal of Neuroscience Research, 2007, 85, 3071-3078.	1.3	14
53	Cyclin-dependent kinase 5 phosphorylates and induces the degradation of ataxin-2. Neuroscience Letters, 2014, 563, 112-117.	1.0	14
54	Neuronal expression of two isoforms of mouse Septin 5. Journal of Neuroscience Research, 2010, 88, 1309-1316.	1.3	11

#	Article	IF	CITATIONS
55	Dab1â€mediated colocalization of multiâ€adaptor protein <scp><scp>CIN85</scp></scp> with Reelin receptors, <scp>A</scp> po <scp>ER</scp> 2 and <scp>VLDLR</scp> , in neurons. Genes To Cells, 2013, 18, 410-424.	0.5	10
56	Structural Basis for the Different Stability and Activity between the Cdk5 Complexes with p35 and p39 Activators. Journal of Biological Chemistry, 2013, 288, 32433-32439.	1.6	10
57	Valproic acid downregulates Cdk5 activity via the transcription of the p35 mRNA. Biochemical and Biophysical Research Communications, 2014, 447, 678-682.	1.0	8
58	Kinase activity of endosomal kinase <scp>LMTK</scp> 1A regulates its cellular localization and interactions with cytoskeletons. Genes To Cells, 2016, 21, 1080-1094.	0.5	8
59	The effect of Cyclinâ€dependent kinase 5 on voltageâ€dependent calcium channels in <scp>PC</scp> 12 cells varies according to channel type and cell differentiation state. Journal of Neurochemistry, 2014, 130, 498-506.	2.1	7
60	Preferential targeting of p39-activated Cdk5 to Rac1-induced lamellipodia. Molecular and Cellular Neurosciences, 2014, 61, 34-45.	1.0	7
61	S6K/p70S6K1 protects against tau-mediated neurodegeneration by decreasing the level of tau phosphorylated at Ser262 in a Drosophila model of tauopathy. Neurobiology of Aging, 2018, 71, 255-264.	1.5	6
62	Lemur tail kinase 1 (LMTK1) regulates the endosomal localization of \hat{l}^2 -secretase BACE1. Journal of Biochemistry, 2021, 170, 729-738.	0.9	4
63	Isoform-dependent subcellular localization of LMTK1A and LMTK1B and their roles in axon outgrowth and spine formation. Journal of Biochemistry, 2020, 168, 23-32.	0.9	3
64	Effects of p35 Mutations Associated with Mental Retardation on the Cellular Function of p35-CDK5. PLoS ONE, 2015, 10, e0140821.	1.1	2
65	Cyclin-Dependent Kinase 5 (Cdk5): Preparation and Measurement of Kinase Activity. Neuromethods, 2012, , 87-103.	0.2	1
66	6. Molecular mechanisms of neural stem cells differentiation. , 2019, , 127-144.		0