
Kathleen M Friel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11709606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HABIT+tDCS: a study protocol of a randomised controlled trial (RCT) investigating the synergistic efficacy of hand-arm bimanual intensive therapy (HABIT) plus targeted non-invasive brain stimulation to improve upper extremity function in school-age children with unilateral cerebral palsy. BMJ Open, 2022, 12, e052409.	1.9	3
2	Reorganization of Ventral Premotor Cortex After Ischemic Brain Injury: Effects of Forced Use. Neurorehabilitation and Neural Repair, 2022, , 154596832211016.	2.9	2
3	Improvements in Upper Extremity Function Following Intensive Training Are Independent of Corticospinal Tract Organization in Children With Unilateral Spastic Cerebral Palsy: A Clinical Randomized Trial. Frontiers in Neurology, 2021, 12, 660780.	2.4	17
4	Brain activation changes following motor training in children with unilateral cerebral palsy: An fMRI study. Annals of Physical and Rehabilitation Medicine, 2021, 64, 101502.	2.3	8
5	Anticipatory Motor Planning and Control of Grasp in Children with Unilateral Spastic Cerebral Palsy. Brain Sciences, 2021, 11, 1161.	2.3	3
6	Motor Skill Training May Restore Impaired Corticospinal Tract Fibers in Children With Cerebral Palsy. Neurorehabilitation and Neural Repair, 2020, 34, 533-546.	2.9	19
7	Intensive Unimanual Training Leads to Better Reaching and Head Control than Bimanual Training in Children with Unilateral Cerebral Palsy. Physical and Occupational Therapy in Pediatrics, 2020, 40, 491-505.	1.3	4
8	Anatomical and Functional Characterization in Children With Unilateral Cerebral Palsy: An Atlas-Based Analysis. Neurorehabilitation and Neural Repair, 2020, 34, 148-158.	2.9	10
9	Relationship Between Integrity of the Corpus Callosum and Bimanual Coordination in Children With Unilateral Spastic Cerebral Palsy. Frontiers in Human Neuroscience, 2019, 13, 334.	2.0	18
10	Bimanual Skill Learning after Transcranial Direct Current Stimulation in Children with Unilateral Cerebral Palsy: A Brief Report. Developmental Neurorehabilitation, 2019, 22, 504-508.	1.1	6
11	Reliability and responsiveness of the Jebsenâ€Taylor Test of Hand Function and the BoxÂand Block Test for children with cerebral palsy. Developmental Medicine and Child Neurology, 2019, 61, 1182-1188.	2.1	48
12	The Relationship Between Hand Function and Overlapping Motor Representations of the Hands in the Contralesional Hemisphere in Unilateral Spastic Cerebral Palsy. Neurorehabilitation and Neural Repair, 2018, 32, 62-72.	2.9	24
13	Neurophysiological mechanisms and functional impact of mirror movements in children with unilateral spastic cerebral palsy. Developmental Medicine and Child Neurology, 2018, 60, 155-161.	2.1	27
14	Intensive upper―and lowerâ€extremity training for children with bilateral cerebral palsy: a quasiâ€randomized trial. Developmental Medicine and Child Neurology, 2017, 59, 625-633.	2.1	70
15	Does Corticospinal Tract Connectivity Influence the Response to Intensive Bimanual Therapy in Children With Unilateral Cerebral Palsy?. Neurorehabilitation and Neural Repair, 2017, 31, 250-260.	2.9	50
16	Combined transcranial direct current stimulation and robotic upper limb therapy improves upper limb function in an adult with cerebral palsy. NeuroRehabilitation, 2017, 41, 41-50.	1.3	12
17	Effect of sensory and motor connectivity on hand function in pediatric hemiplegia. Annals of Neurology, 2017, 82, 766-780.	5.3	43
18	Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy. Developmental Medicine and Child Neurology, 2017, 59, 65-71.	2.1	33

KATHLEEN M FRIEL

#	Article	IF	CITATIONS
19	Response: Commentary: Skilled Bimanual Training Drives Motor Cortex Plasticity in Children with Unilateral Cerebral Palsy. Frontiers in Human Neuroscience, 2017, 11, 619.	2.0	2
20	A telehealth approach to conducting clinical swallowing evaluations in children with cerebral palsy. Research in Developmental Disabilities, 2016, 55, 207-217.	2.2	48
21	Skilled Bimanual Training Drives Motor Cortex Plasticity in Children With Unilateral Cerebral Palsy. Neurorehabilitation and Neural Repair, 2016, 30, 834-844.	2.9	78
22	The effects of intensive bimanual training with and without tactile training on tactile function in children with unilateral spastic cerebral palsy: A pilot study. Research in Developmental Disabilities, 2016, 49-50, 129-139.	2.2	25
23	Capturing neuroplastic changes after bimanual intensive rehabilitation in children with unilateral spastic cerebral palsy: A combined DTI, TMS and fMRI pilot study. Research in Developmental Disabilities, 2015, 43-44, 136-149.	2.2	58
24	Activity-Based Therapies for Repair of the Corticospinal System Injured during Development. Frontiers in Neurology, 2014, 5, 229.	2.4	57
25	Improvements in hand function after intensive bimanual training are not associated with corticospinal tract dysgenesis in children with unilateral cerebral palsy. Experimental Brain Research, 2014, 232, 2001-2009.	1.5	29
26	Pathophysiological mechanisms of impaired limb use and repair strategies for motor systems after unilateral injury of the developing brain. Developmental Medicine and Child Neurology, 2013, 55, 27-31.	2.1	41
27	Harnessing activityâ€dependent plasticity to repair the damaged corticospinal tract in an animal model of cerebral palsy. Developmental Medicine and Child Neurology, 2011, 53, 9-13.	2.1	79
28	Harnessing activity-dependent plasticity in the developing corticospinal system to restore motor function after perinatal brain injury. Technology and Disability, 2010, 22, 167-177.	0.6	1
29	Intensive training of upper extremity function in children with cerebral palsy. , 2009, , 438-457.		7
30	Pyramidal Tract Stimulation Restores Normal Corticospinal Tract Connections and Visuomotor Skill after Early Postnatal Motor Cortex Activity Blockade. Journal of Neuroscience, 2008, 28, 7426-7434.	3.6	65
31	Bilateral Activity-Dependent Interactions in the Developing Corticospinal System. Journal of Neuroscience, 2007, 27, 11083-11090.	3.6	75
32	Effects of a Rostral Motor Cortex Lesion on Primary Motor Cortex Hand Representation Topography in Primates. Neurorehabilitation and Neural Repair, 2007, 21, 51-61.	2.9	20
33	Activity- and use-dependent plasticity of the developing corticospinal systemâ~†. Neuroscience and Biobehavioral Reviews, 2007, 31, 1125-1135.	6.1	127
34	Topographically Divergent and Convergent Connectivity between Premotor and Primary Motor Cortex. Cerebral Cortex, 2006, 16, 1057-1068.	2.9	61
35	Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys. Experimental Brain Research, 2006, 169, 106-116.	1.5	84
36	Ipsilateral connections of the ventral premotor cortex in a new world primate. Journal of Comparative Neurology, 2006, 495, 374-390.	1.6	66

KATHLEEN M FRIEL

#	Article	IF	CITATIONS
37	Role of sensory-motor cortex activity in postnatal development of corticospinal axon terminals in the cat. Journal of Comparative Neurology, 2005, 485, 43-56.	1.6	46
38	Dissociation of Sensorimotor Deficits After Rostral Versus Caudal Lesions in the Primary Motor Cortex Hand Representation. Journal of Neurophysiology, 2005, 94, 1312-1324.	1.8	46
39	A Squirrel Monkey Model of Poststroke Motor Recovery. ILAR Journal, 2003, 44, 161-174.	1.8	58
40	Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: A feasibility study in primates. Neurological Research, 2003, 25, 801-810.	1.3	269
41	Factors Contributing to Motor Impairment and Recovery after Stroke. Neurorehabilitation and Neural Repair, 2000, 14, 301-310.	2.9	18
42	Effects of Postlesion Experience on Behavioral Recovery and Neurophysiologic Reorganization after Cortical Injury in Primates. Neurorehabilitation and Neural Repair, 2000, 14, 187-198.	2.9	99
43	Role of sensory deficits in motor impairments after injury to primary motor cortex. Neuropharmacology, 2000, 39, 733-742.	4.1	90
44	Recovery of motor function after focal cortical injury in primates: compensatory movement patterns used during rehabilitative training. Somatosensory & Motor Research, 1998, 15, 173-189.	0.9	141
45	Mirror movements and brain pathology in children with unilateral cerebral palsy. Developmental Medicine and Child Neurology, 0, , .	2.1	1