
David J Richardson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11708999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial nitric oxide metabolism: Recent insights in rhizobia. Advances in Microbial Physiology, 2021, 78, 259-315.	1.0	13
2	Microbial Small RNAs – The Missing Link in the Nitrogen Cycle?. Frontiers in Environmental Science, 2021, 9, .	1.5	2
3	Effect of pH on the denitrification proteome of the soil bacterium Paracoccus denitrificans PD1222. Scientific Reports, 2021, 11, 17276.	1.6	18
4	Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Science, 2020, 29, 830-842.	3.1	48
5	Exploring the Molecular Machinery of Denitrification in Haloferax mediterranei Through Proteomics. Frontiers in Microbiology, 2020, 11, 605859.	1.5	8
6	The Crystal Structure of a Biological Insulated Transmembrane Molecular Wire. Cell, 2020, 181, 665-673.e10.	13.5	123
7	nosX is essential for whole-cell N2O reduction in Paracoccus denitrificans but not for assembly of copper centres of nitrous oxide reductase. Microbiology (United Kingdom), 2020, 166, 909-917.	0.7	4
8	High-average-power picosecond mid-infrared OP-GaAs OPO. Optics Express, 2020, 28, 5741.	1.7	30
9	Compact picosecond mid-IR PPLN OPO in burst-mode operation. EPJ Web of Conferences, 2020, 243, 18004.	0.1	0
10	A Central Small RNA Regulatory Circuit Controlling Bacterial Denitrification and N ₂ O Emissions. MBio, 2019, 10, .	1.8	12
11	NosL is a dedicated copper chaperone for assembly of the Cu _Z center of nitrous oxide reductase. Chemical Science, 2019, 10, 4985-4993.	3.7	24
12	A dual functional redox enzyme maturation protein for respiratory and assimilatory nitrate reductases in bacteria. Molecular Microbiology, 2019, 111, 1592-1603.	1.2	19
13	The Hemoglobin Bjgb From Bradyrhizobium diazoefficiens Controls NO Homeostasis in Soybean Nodules to Protect Symbiotic Nitrogen Fixation. Frontiers in Microbiology, 2019, 10, 2915.	1.5	17
14	Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners. Journal of Biological Chemistry, 2018, 293, 8103-8112.	1.6	51
15	Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222. FEMS Microbiology Letters, 2018, 365, .	0.7	17
16	Transcriptional and environmental control of bacterial denitrification and N2O emissions. FEMS Microbiology Letters, 2018, 365, .	0.7	45
17	Membrane-spanning electron transfer proteins from electrogenic bacteria: Production and investigation. Methods in Enzymology, 2018, 613, 257-275.	0.4	6
18	Exploring the Denitrification Proteome of Paracoccus denitrificans PD1222. Frontiers in Microbiology, 2018, 9, 1137.	1.5	41

#	Article	IF	CITATIONS
19	Transcriptional and translational adaptation to aerobic nitrate anabolism in the denitrifier <i>Paracoccus denitrificans</i> . Biochemical Journal, 2017, 474, 1769-1787.	1.7	24
20	Light-Driven H ₂ Evolution and Câ•C or Câ•O Bond Hydrogenation by <i>Shewanella oneidensis</i> : A Versatile Strategy for Photocatalysis by Nonphotosynthetic Microorganisms. ACS Catalysis, 2017, 7, 7558-7566.	5.5	72
21	Analysis of multiple haloarchaeal genomes suggests that the quinoneâ€dependent respiratory nitric oxide reductase is an important source of nitrous oxide in hypersaline environments. Environmental Microbiology Reports, 2017, 9, 788-796.	1.0	19
22	Comparative structure-potentio-spectroscopy of the Shewanella outer membrane multiheme cytochromes. Current Opinion in Electrochemistry, 2017, 4, 199-205.	2.5	22
23	Tuning the modular <i>Paracoccus denitrificans</i> respirome to adapt from aerobic respiration to anaerobic denitrification. Environmental Microbiology, 2017, 19, 4953-4964.	1.8	47
24	The <scp><i>P</i></scp> <i>aracoccus denitrificans</i> <scp>N</scp> ar <scp>K</scp> â€like nitrate and nitrite transporters—probing nitrate uptake and nitrate/nitrite exchange mechanisms. Molecular Microbiology, 2017, 103, 117-133.	1.2	30
25	Genome-Wide Discovery of Putative sRNAs in Paracoccus denitrificans Expressed under Nitrous Oxide Emitting Conditions. Frontiers in Microbiology, 2016, 7, 1806.	1.5	16
26	Photoreduction of <i>Shewanella oneidensis</i> Extracellular Cytochromes by Organic Chromophores and Dyeâ€Sensitized TiO ₂ . ChemBioChem, 2016, 17, 2324-2333.	1.3	15
27	Control of bacterial nitrate assimilation by stabilization of G-quadruplex DNA. Chemical Communications, 2016, 52, 13511-13514.	2.2	35
28	An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in <i>Bradyrhizobium japonicum</i> . Biochemical Journal, 2016, 473, 297-309.	1.7	46
29	Redox Linked Flavin Sites in Extracellular Decaheme Proteins Involved in Microbe-Mineral Electron Transfer Scientific Reports, 2015, 5, 11677.	1.6	138
30	Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth. Frontiers in Microbiology, 2015, 6, 332.	1.5	48
31	Resolution of Key Roles for the Distal Pocket Histidine in Cytochrome <i>c</i> Nitrite Reductases. Journal of the American Chemical Society, 2015, 137, 3059-3068.	6.6	28
32	Characterisation of chlorate reduction in the haloarchaeon Haloferax mediterranei. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 587-594.	1.1	44
33	Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides. Geochimica Et Cosmochimica Acta, 2015, 163, 299-310.	1.6	41
34	Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier. Optics Express, 2014, 22, 21938.	1.7	23
35	The Xâ€ray crystal structure of <i>Shewanella oneidensis</i> OmcA reveals new insight at the microbe–mineral interface. FEBS Letters, 2014, 588, 1886-1890.	1.3	73
36	A transâ€outer membrane porin ytochrome protein complex for extracellular electron transfer by <scp><i>G</i></scp> <i>eobacter sulfurreducens</i> â€ <scp>PCA</scp> . Environmental Microbiology Reports, 2014, 6, 776-785.	1.0	178

3

#	Article	IF	CITATIONS
37	Protein–Protein Interaction Regulates the Direction of Catalysis and Electron Transfer in a Redox Enzyme Complex. Journal of the American Chemical Society, 2013, 135, 10550-10556.	6.6	68
38	Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6346-6351.	3.3	179
39	Freely diffusing versus adsorbed protein: Which better mimics the cellular state of a redox protein?. Electrochimica Acta, 2013, 110, 73-78.	2.6	6
40	Nitrogen Oxyanion-dependent Dissociation of a Two-component Complex That Regulates Bacterial Nitrate Assimilation. Journal of Biological Chemistry, 2013, 288, 29692-29702.	1.6	29
41	Electrode assemblies composed of redox cascades from microbial respiratory electron transfer chains. Biochemical Society Transactions, 2013, 41, 1249-1253.	1.6	4
42	Unexpected weak magnetic exchange coupling between haem and non-haem iron in the catalytic site of nitric oxide reductase (NorBC) from <i>Paracoccus denitrificans</i> . Biochemical Journal, 2013, 451, 389-394.	1.7	6
43	Modeling the effect of copper availability on bacterial denitrification. MicrobiologyOpen, 2013, 2, 756-765.	1.2	14
44	Copper control of bacterial nitrous oxide emission and its impact on vitamin B ₁₂ -dependent metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19926-19931.	3.3	120
45	Controlling electron transfer at the microbe–mineral interface. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7537-7538.	3.3	20
46	Analysis of structural MtrC models based on homology with the crystal structure of MtrF. Biochemical Society Transactions, 2012, 40, 1181-1185.	1.6	25
47	Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1157-1168.	1.8	399
48	Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in <i>Salmonella enterica</i> serovar Typhimurium. Biochemical Journal, 2012, 441, 755-762.	1.7	50
49	Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control. Antioxidants and Redox Signaling, 2012, 16, 819-852.	2.5	170
50	Development of a proteoliposome model to probe transmembrane electron-transfer reactions. Biochemical Society Transactions, 2012, 40, 1257-1260.	1.6	20
51	Exploring the biochemistry at the extracellular redox frontier of bacterial mineral Fe(III) respiration. Biochemical Society Transactions, 2012, 40, 493-500.	1.6	24
52	The roles of CymA in support of the respiratory flexibility of <i>Shewanella oneidensis</i> MR-1. Biochemical Society Transactions, 2012, 40, 1217-1221.	1.6	54
53	A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in <i>Shewanella</i> . Biochemical Journal, 2012, 444, 465-474.	1.7	116
54	Electron Transport at the Microbe–Mineral Interface: a synthesis of current research challenges. Biochemical Society Transactions, 2012, 40, 1163-1166.	1.6	13

#	Article	IF	CITATIONS
55	Molecular structure and free energy landscape for electron transport in the decahaem cytochrome MtrF. Biochemical Society Transactions, 2012, 40, 1198-1203.	1.6	37
56	Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1. Frontiers in Microbiology, 2012, 3, 37.	1.5	186
57	Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1. Frontiers in Microbiology, 2012, 3, 50.	1.5	186
58	Nitrous oxide production in soil isolates of nitrateâ€ammonifying bacteria. Environmental Microbiology Reports, 2012, 4, 66-71.	1.0	64
59	The Crystal Structure of the Extracellular 11-heme Cytochrome UndA Reveals a Conserved 10-heme Motif and Defined Binding Site for Soluble Iron Chelates. Structure, 2012, 20, 1275-1284.	1.6	56
60	The â€~porin–cytochrome' model for microbeâ€toâ€mineral electron transfer. Molecular Microbiology, 2012, 85, 201-212.	1.2	222
61	The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways. Environmental Microbiology, 2012, 14, 1788-1800.	1.8	110
62	The relationship between redox enzyme activity and electrochemical potential—cellular and mechanistic implications from protein film electrochemistry. Physical Chemistry Chemical Physics, 2011, 13, 7720.	1.3	27
63	Molecular interactions between multihaem cytochromes: probing the protein–protein interactions between pentahaem cytochromes of a nitrite reductase complex. Biochemical Society Transactions, 2011, 39, 263-268.	1.6	8
64	Nitric oxide detoxification in the rhizobia–legume symbiosis. Biochemical Society Transactions, 2011, 39, 184-188.	1.6	52
65	The nitric oxide response in plant-associated endosymbiotic bacteria. Biochemical Society Transactions, 2011, 39, 1880-1885.	1.6	31
66	Enzymology and ecology of the nitrogen cycle. Biochemical Society Transactions, 2011, 39, 175-178.	1.6	73
67	Characterization of the active site and calcium binding in cytochrome <i>c</i> nitrite reductases. Biochemical Society Transactions, 2011, 39, 1871-1875.	1.6	8
68	A composite biochemical system for bacterial nitrate and nitrite assimilation as exemplified by <i>Paracoccus denitrificans</i> . Biochemical Journal, 2011, 435, 743-753.	1.7	55
69	Electrocatalytic reduction of nitrate and selenate by NapAB. Biochemical Society Transactions, 2011, 39, 236-242.	1.6	7
70	Bacterial nitrate assimilation: gene distribution and regulation. Biochemical Society Transactions, 2011, 39, 1838-1843.	1.6	112
71	A haloarchaeal ferredoxin electron donor that plays an essential role in nitrate assimilation. Biochemical Society Transactions, 2011, 39, 1844-1848.	1.6	8
72	The production and detoxification of a potent cytotoxin, nitric oxide, by pathogenic enteric bacteria. Biochemical Society Transactions, 2011, 39, 1876-1879.	1.6	28

#	Article	IF	CITATIONS
73	Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils. Soil Biology and Biochemistry, 2011, 43, 1607-1611.	4.2	92
74	Electron transfer to the active site of the bacterial nitric oxide reductase is controlled by ligand binding to heme b3. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 451-457.	0.5	15
75	A bacterial process for selenium nanosphere assembly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13480-13485.	3.3	165
76	Structure of a bacterial cell surface decaheme electron conduit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9384-9389.	3.3	301
77	Kinetic and thermodynamic resolution of the interactions between sulfite and the pentahaem cytochrome NrfA from <i>Escherichia coli</i> . Biochemical Journal, 2010, 431, 73-80.	1.7	33
78	Production of Nitric Oxide and Nitrosylleghemoglobin Complexes in Soybean Nodules in Response to Flooding. Molecular Plant-Microbe Interactions, 2010, 23, 702-711.	1.4	107
79	c-Type Cytochrome Biogenesis Can Occur via a Natural Ccm System Lacking CcmH, CcmG, and the Heme-binding Histidine of CcmE. Journal of Biological Chemistry, 2010, 285, 22882-22889.	1.6	24
80	Quinol-cytochrome c Oxidoreductase and Cytochrome c4 Mediate Electron Transfer during Selenate Respiration in Thauera selenatis. Journal of Biological Chemistry, 2010, 285, 18433-18442.	1.6	38
81	The periplasmic nitrate reductase in Shewanella: the resolution, distribution and functional implications of two NAP isoforms, NapEDABC and NapDAGHB. Microbiology (United Kingdom), 2010, 156, 302-312.	0.7	76
82	Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains. Microbiology (United Kingdom), 2009, 155, 3992-4004.	0.7	36
83	Influence of metal ions and organic carbons on denitrification activity of the halotolerant bacterium, Paracoccus pantotrophus P16 a strain from shrimp pond. Electronic Journal of Biotechnology, 2009, 12, 0-0.	1.2	16
84	Expression of <i>Bradyrhizobium japonicum cbb</i> ₃ terminal oxidase under denitrifying conditions is subjected to redox control. FEMS Microbiology Letters, 2009, 298, 20-28.	0.7	11
85	Radiolabelled proteomics to determine differential functioning of <i>Accumulibacter</i> during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal. Environmental Microbiology, 2009, 11, 3029-3044.	1.8	60
86	Characterization of an electron conduit between bacteria and the extracellular environment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22169-22174.	3.3	410
87	The roles of outer membrane cytochromes of <i>Shewanella</i> and <i>Geobacter</i> in extracellular electron transfer. Environmental Microbiology Reports, 2009, 1, 220-227.	1.0	285
88	The bacterial respiratory nitric oxide reductase. Biochemical Society Transactions, 2009, 37, 392-399.	1.6	62
89	Enterobacter cloacae SLD1a-1 gains a selective advantage from selenate reduction when growing in nitrate-depleted anaerobic environments. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 867-873.	1.4	10
90	Role of <i>Bradyrhizobium japonicum</i> cytochrome <i>c</i> ₅₅₀ in nitrite and nitrate respiration. FEMS Microbiology Letters, 2008, 279, 188-194.	0.7	29

#	Article	IF	CITATIONS
91	Interdependence of two NarK domains in a fused nitrate/nitrite transporter. Molecular Microbiology, 2008, 70, 667-681.	1.2	45
92	Features of a twinâ€arginine signal peptide required for recognition by a Tat proofreading chaperone. FEBS Letters, 2008, 582, 3979-3984.	1.3	31
93	Nitrogen metabolism in haloarchaea. Saline Systems, 2008, 4, 9.	2.0	86
94	Direct Involvement of Type II Secretion System in Extracellular Translocation of <i>Shewanella oneidensis</i> Outer Membrane Cytochromes MtrC and OmcA. Journal of Bacteriology, 2008, 190, 5512-5516.	1.0	113
95	The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1480-1490.	0.5	156
96	Structural and Functional Flexibility of Bacterial Respiromes. , 2008, , 97-128.		4
97	Role of a Conserved Glutamine Residue in Tuning the Catalytic Activity of <i>Escherichia coli</i> Cytochrome <i>c</i> Nitrite Reductase. Biochemistry, 2008, 47, 3789-3799.	1.2	36
98	Defining the Proton Entry Point in the Bacterial Respiratory Nitric-oxide Reductase. Journal of Biological Chemistry, 2008, 283, 3839-3845.	1.6	48
99	A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology (United Kingdom), 2008, 154, 1218-1228.	0.7	101
100	The Nitric Oxide Reductase Activity of Cytochrome c Nitrite Reductase from Escherichia coli. Journal of Biological Chemistry, 2008, 283, 9587-9594.	1.6	97
101	Escherichia coli Cytochrome c Nitrite Reductase NrfA. Methods in Enzymology, 2008, 437, 63-77.	0.4	36
102	The <i>c</i> -Type Cytochrome OmcA Localizes to the Outer Membrane upon Heterologous Expression in <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 5127-5131.	1.0	23
103	The Respiratory Nitric Oxide Reductase (NorBC) from Paracoccus denitrificans. Methods in Enzymology, 2008, 437, 79-101.	0.4	23
104	Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of <i>Paracoccus pantotrophus</i> : exploring the activity of a redox-balancing enzyme as a function of electrochemical potential. Biochemical Journal, 2008, 409, 159-168.	1.7	43
105	The role of multihaem cytochromes in the respiration of nitrite in <i>Escherichia coli</i> and Fe(III) in <i>Shewanella oneidensis</i> . Biochemical Society Transactions, 2008, 36, 1005-1010.	1.6	18
106	Respiration of Nitrate and Nitrite. EcoSal Plus, 2008, 3, .	2.1	25
107	Spectropotentiometric and Structural Analysis of the Periplasmic Nitrate Reductase from Escherichia coli. Journal of Biological Chemistry, 2007, 282, 6425-6437.	1.6	94

108 The Prokaryotic Nitrate Reductases. , 2007, , 21-35.

#	Article	IF	CITATIONS
109	Investigation of the redox centres of periplasmic selenate reductase from <i>Thauera selenatis</i> by EPR spectroscopy. Biochemical Journal, 2007, 408, 19-28.	1.7	26
110	Introduction to the Biochemistry and Molecular Biology of Denitrification. , 2007, , 3-20.		87
111	Characterization of Protein-Protein Interactions Involved in Iron Reduction by <i>Shewanella oneidensis</i> MR-1. Applied and Environmental Microbiology, 2007, 73, 5797-5808.	1.4	145
112	Structural diversity in twin-arginine signal peptide-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15641-15646.	3.3	71
113	The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology (United Kingdom), 2007, 153, 411-419.	0.7	89
114	The crystal structure of the pentahaem <i>c</i> -type cytochrome NrfB and characterization of its solution-state interaction with the pentahaem nitrite reductase NrfA. Biochemical Journal, 2007, 406, 19-30.	1.7	69
115	A new assay for nitric oxide reductase reveals two conserved glutamate residues form the entrance to a proton-conducting channel in the bacterial enzyme. Biochemical Journal, 2007, 401, 111-119.	1.7	60
116	Biochemistry and Molecular Biology of Nitrification. , 2007, , 209-222.		16
117	A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding. Molecular Microbiology, 2007, 64, 1049-1060.	1.2	51
118	Look on the positive side! The orientation, identification and bioenergetics of â€Â~Archaeal' membrane-bound nitrate reductases. FEMS Microbiology Letters, 2007, 276, 129-139.	0.7	107
119	Spectopotentiometric properties and salt-dependent thermotolerance of a [2Fe–2S] ferredoxin-involved nitrate assimilation inHaloferax mediterranei. FEMS Microbiology Letters, 2007, 277, 50-55.	0.7	7
120	Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. Journal of Biological Inorganic Chemistry, 2007, 12, 1083-1094.	1.1	209
121	Fluorescence-Based Siderophore Biosensor for the Determination of Bioavailable Iron in Oceanic Waters. Analytical Chemistry, 2006, 78, 5040-5045.	3.2	43
122	Development of a viologen-based microtiter plate assay for the analysis of oxyanion reductase activity: Application to the membrane-bound selenate reductase from Enterobacter cloacae SLD1a-1. Analytical Biochemistry, 2006, 358, 289-294.	1.1	12
123	Expression and characterization of the assimilatory NADH-nitrite reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1. Archives of Microbiology, 2006, 186, 339-344.	1.0	22
124	Resolution of Distinct Membrane-Bound Enzymes from Enterobacter cloacae SLD1a-1 That Are Responsible for Selective Reduction of Nitrate and Selenate Oxyanions. Applied and Environmental Microbiology, 2006, 72, 5173-5180.	1.4	88
125	Soluble Aldose Sugar Dehydrogenase from Escherichia coli. Journal of Biological Chemistry, 2006, 281, 30650-30659.	1.6	43

The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA. Microbiology (United) Tj ETQq0 0 0 rgBT /Overtock 10 48 50 57 Tc

#	Article	IF	CITATIONS
127	Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes. Environmental Microbiology, 2005, 7, 1927-1936.	1.8	65
128	A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environmental Microbiology, 2005, 7, 1917-1926.	1.8	107
129	Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proceedings of the United States of America, 2005, 102, 8460-8465.	3.3	84
130	Reductive activation of nitrate reductases. Dalton Transactions, 2005, , 3580.	1.6	33
131	Diode or Tunnel-Diode Characteristics? Resolving the Catalytic Consequences of Proton Coupled Electron Transfer in a Multi-Centered Oxidoreductase. Journal of the American Chemical Society, 2005, 127, 14964-14965.	6.6	34
132	Redox-dependent Open and Closed Forms of the Active Site of the Bacterial Respiratory Nitric-oxide Reductase Revealed by Cyanide Binding Studies. Journal of Biological Chemistry, 2004, 279, 17120-17125.	1.6	22
133	Purification and Spectropotentiometric Characterization of Escherichia coli NrfB, a Decaheme Homodimer That Transfers Electrons to the Decaheme Periplasmic Nitrite Reductase Complex. Journal of Biological Chemistry, 2004, 279, 41333-41339.	1.6	33
134	NapF Is a Cytoplasmic Iron-Sulfur Protein Required for Fe-S Cluster Assembly in the Periplasmic Nitrate Reductase. Journal of Biological Chemistry, 2004, 279, 49727-49735.	1.6	36
135	Construction of a whole-cell gene reporter for the fluorescent bioassay of nitrate. Analytical Biochemistry, 2004, 328, 60-66.	1.1	40
136	Redox-triggered events in cytochrome c nitrite reductase. Bioelectrochemistry, 2004, 63, 43-47.	2.4	26
137	Resolving Complexity in the Interactions of Redox Enzymes and Their Inhibitors:Â Contrasting Mechanisms for the Inhibition of a CytochromecNitrite Reductase Revealed by Protein Film Voltammetryâ€. Biochemistry, 2004, 43, 15086-15094.	1.2	28
138	Electrochemical Control of Protein Monolayers at Indium Tin Oxide Surfaces for the Reagentless Optical Biosensing of Nitric Oxide. Langmuir, 2004, 20, 1901-1908.	1.6	38
139	Paracoccus pantotrophusNapC can reductively activate cytochromecd1nitrite reductase. FEBS Letters, 2004, 565, 48-52.	1.3	8
140	Tuning a Nitrate Reductase for Function. Journal of Biological Chemistry, 2004, 279, 32212-32218.	1.6	73
141	NapCH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing. Biochemical Journal, 2004, 379, 47-55.	1.7	80
142	Properties of the periplasmic nitrate reductases fromParacoccus pantotrophusandEscherichia coliafter growth in tungsten-supplemented media. FEMS Microbiology Letters, 2003, 220, 261-269.	0.7	56
143	Selenate reduction byEnterobacter cloacaeSLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiology Letters, 2003, 228, 273-279.	0.7	67
144	Characterization of Transcriptional Regulation of Shewanella frigidimarina Fe(III)-Induced Flavocytochrome c Reveals a Novel Iron-Responsive Gene Regulation System. Journal of Bacteriology, 2003, 185, 4564-4571.	1.0	14

#	Article	IF	CITATIONS
145	Characterization of the Shewanella oneidensis MR-1 Decaheme Cytochrome MtrA. Journal of Biological Chemistry, 2003, 278, 27758-27765.	1.6	209
146	Characterization of a nitrate-respiring bacterial community using the nitrate reductase gene (narG) as a functional marker. Microbiology (United Kingdom), 2003, 149, 229-237.	0.7	59
147	Spectral Properties of Bacterial Nitric-oxide Reductase. Journal of Biological Chemistry, 2002, 277, 20146-20150.	1.6	38
148	Respiratory Detoxification of Nitric Oxide by the Cytochromec Nitrite Reductase of Escherichia coli. Journal of Biological Chemistry, 2002, 277, 23664-23669.	1.6	171
149	Protein Film Voltammetry Reveals Distinctive Fingerprints of Nitrite and Hydroxylamine Reduction by a Cytochrome c Nitrite Reductase. Journal of Biological Chemistry, 2002, 277, 23374-23381.	1.6	87
150	Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases. Biochemical Journal, 2002, 368, 425-432.	1.7	40
151	Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy. Biochemical Journal, 2002, 363, 817.	1.7	16
152	Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy. Biochemical Journal, 2002, 363, 817-823.	1.7	30
153	Properties of a Soluble Domain of Subunit C of a Bacterial Nitric Oxide Reductaseâ€,‡. Biochemistry, 2002, 41, 10858-10865.	1.2	17
154	Structure and Spectroscopy of the Periplasmic Cytochrome c Nitrite Reductase from Escherichia coli. Biochemistry, 2002, 41, 2921-2931.	1.2	151
155	Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Molecular Microbiology, 2002, 44, 157-170.	1.2	63
156	Enzyme-catalysed nitrate reduction—themes and variations as revealed by protein film voltammetry. Bioelectrochemistry, 2002, 56, 17-18.	2.4	10
157	Catalytic Protein Film Voltammetry from a Respiratory Nitrate Reductase Provides Evidence for Complex Electrochemical Modulation of Enzyme Activityâ€. Biochemistry, 2001, 40, 11294-11307.	1.2	115
158	Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the di-haem periplasmic nitrate reductase of Paracoccus pantotrophus. FEBS Letters, 2001, 500, 71-74.	1.3	12
159	Maximal Expression of Membrane-Bound Nitrate Reductase in Paracoccus Is Induced by Nitrate via a Third FNR-Like Regulator Named NarR. Journal of Bacteriology, 2001, 183, 3606-3613.	1.0	64
160	Two Conserved Glutamates in the Bacterial Nitric Oxide Reductase Are Essential for Activity but Not Assembly of the Enzyme. Journal of Bacteriology, 2001, 183, 189-199.	1.0	107
161	Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus. Biochemical Journal, 2000, 352, 859-864.	1.7	27
162	Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus. Biochemical Journal, 2000, 352, 859.	1.7	13

#	Article	IF	CITATIONS
163	Self-assembled monolayers: a versatile tool for the formulation of bio-surfaces. TrAC - Trends in Analytical Chemistry, 2000, 19, 530-540.	5.8	215
164	Detection of genes for membrane-bound nitrate reductase in nitrate-respiring bacteria and in community DNA. FEMS Microbiology Letters, 2000, 183, 275-279.	0.7	51
165	Purification and Magneto-optical Spectroscopic Characterization of Cytoplasmic Membrane and Outer Membrane Multiheme c-Type Cytochromes from Shewanella frigidimarina NCIMB400. Journal of Biological Chemistry, 2000, 275, 8515-8522.	1.6	105
166	Bacterial respiration: a flexible process for a changing environment 1999 Fleming Lecture (Delivered) Tj ETQq0 0	0 rgBT /O 0.7	verlock 10 Tf 508
167	Voltammetry of a Flavocytochrome c3: The Lowest Potential Heme Modulates Fumarate Reduction Rates. Biophysical Journal, 2000, 78, 1001-1009.	0.2	20
168	Using direct electrochemistry to probe rate limiting events during nitrate reductase turnover. Faraday Discussions, 2000, 116, 155-169.	1.6	32
169	Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Microbiology (United Kingdom), 2000, 146, 2977-2985.	0.7	67
170	Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology, 1999, 3, 207-219.	2.8	239
171	Crystallization and preliminary X-ray crystallographic analysis of a periplasmic tetrahaem flavocytochrome c 3 from Shewanella frigidimarina NCIMB400 which has fumarate reductase activity. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1222-1225.	2.5	5
172	Dissimilatory Fe(III) reduction byClostridium beijerinckiiisolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiology Letters, 1999, 176, 131-138.	0.7	118
173	Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiology Letters, 1999, 177, 263-270.	0.7	90
174	Open conformation of a flavocytochrome c3 fumarate reductase. Nature Structural Biology, 1999, 6, 1104-1107.	9.7	77
175	Optical biosensing of nitric oxide using the metalloprotein cytochrome c′. Analyst, The, 1999, 124, 129-134.	1.7	28
176	Nitric oxide in bacteria: synthesis and consumption. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1411, 456-474.	0.5	117
177	Models for Molybdenum Coordination during the Catalytic Cycle of Periplasmic Nitrate Reductase from Paracoccus denitrificans Derived from EPR and EXAFS Spectroscopy. Biochemistry, 1999, 38, 9000-9012.	1.2	99
178	A Low-Redox Potential Heme in the Dinuclear Center of Bacterial Nitric Oxide Reductase: Implications for the Evolution of Energy-Conserving Hemeâ^Copper Oxidases. Biochemistry, 1999, 38, 13780-13786.	1.2	102
179	Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. Biochemical Journal, 1999, 342, 439-448.	1.7	63
180	Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. Biochemical Journal, 1999, 342, 439.	1.7	18

#	Article	IF	CITATIONS
181	Spectroscopic Characterization of a Novel Multihemec-Type Cytochrome Widely Implicated in Bacterial Electron Transport. Journal of Biological Chemistry, 1998, 273, 28785-28790.	1.6	129
182	Two Enzymes with a Common Function but Different Heme Ligands in the Forms as Isolated. Optical and Magnetic Properties of the Heme Groups in the Oxidized Forms of Nitrite Reductase, Cytochrome cd1, from Pseudomonas stutzeri and Thiosphaera pantotropha. Biochemistry, 1997, 36, 16267-16276.	1.2	80
183	Optical Biosensing of Gaseous Nitric Oxide Using Spin-Coated Solâ^'Gel Thin Films. Chemistry of Materials, 1997, 9, 2261-2263.	3.2	54
184	Cadmium-specific formation of metal sulfide â€~Q-particles' by Klebsiella pneumoniae. Microbiology (United Kingdom), 1997, 143, 2521-2530.	0.7	110
185	Optical Biosensing of Nitrate Ions Using a Sol–Gel Immobilized Nitrate Reductase. Analyst, The, 1997, 122, 77-80.	1.7	89
186	Bacterial Cadmium Sulfide Semiconductor Particles: An Assessment of their Photoactivity by EPR Spectroscopy. Photochemistry and Photobiology, 1997, 65, 811-817.	1.3	8
187	Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane-bound nitrate reductases in carbon-limited continuous cultures of Paracoccus denitrificans Pd1222. Microbiology (United Kingdom), 1997, 143, 3767-3774.	0.7	51
188	Heterologous expression of heterotrophic nitrification genes. Microbiology (United Kingdom), 1997, 143, 3775-3783.	0.7	42
189	Hydroxylamine oxidation in heterotrophic nitrate-reducing soil bacteria and purification of a hydroxylamine-cytochromec oxidoreductase from aPseudomonas species. Archives of Microbiology, 1996, 166, 421-424.	1.0	20
190	The purification of ammonia monooxygenase fromParacoccus denitrficans. FEBS Letters, 1996, 387, 71-74.	1.3	111
191	Structural investigation of the molybdenum site of the periplasmic nitrate reductase from Thiosphaera pantotropha by X-ray absorption spectroscopy. Biochemical Journal, 1996, 317, 557-563.	1.7	22
192	The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17. Biochemical Journal, 1996, 319, 823-827.	1.7	49
193	The influence of chelating agents upon the dissimilatory reduction of Fe(III) byShewanella putrefaciens. Part 2. Oxo-and hydroxo-bridged polynuclear Fe(III) complexes. BioMetals, 1996, 9, 291-301.	1.8	13
194	Dissimilatory iron(III) reduction by Rhodobacter capsulatus. Microbiology (United Kingdom), 1996, 142, 765-774.	0.7	50
195	The expression of redox proteins of denitrification inThiosphaera pantotropha grown with oxygen, nitrate, and nitrous oxide as electron acceptors. Archives of Microbiology, 1995, 164, 43-49.	1.0	24
196	The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens. BioMetals, 1995, 8, 163.	1.8	28
197	Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Molecular Microbiology, 1995, 15, 319-331.	1.2	144
198	Competition between hydrogen peroxide and nitrate for electrons from the respiratory chains ofThiosphaera pantotrophaandRhodobacter capsulatus. FEMS Microbiology Letters, 1995, 132, 125-129.	0.7	10

#	Article	IF	CITATIONS
199	Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1232, 97-173.	0.5	516
200	Isolation and characterisation of a strain of Pseudomonas putida that can express a periplasmic nitrate reductase. Archives of Microbiology, 1995, 163, 159-166.	1.0	28
201	Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Archives of Microbiology, 1995, 163, 143-147.	1.0	141
202	Sol–gel encapsulation of metalloproteins for the development of optical biosensors for nitrogen monoxide and carbon monoxide. Analyst, The, 1995, 120, 2725-2730.	1.7	97
203	BACTERIAL PHOTOPROTECTION THROUGH EXTRACELLULAR CADMIUM SULFIDE CRYSTALLITES. Photochemistry and Photobiology, 1995, 62, 1022-1026.	1.3	15
204	A denitrifying strain ofRhodobacter capsulatus. FEMS Microbiology Letters, 1994, 120, 323-328.	0.7	17
205	Mo(V) Electron Paramagnetic Resonance Signals from the Periplasmic Nitrate Reductase of Thiosphaera Pantotropha. FEBS Journal, 1994, 226, 789-798.	0.2	55
206	Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. FEBS Journal, 1994, 220, 117-124.	0.2	115
207	Characterization of the paramagnetic iron-containing redox centres ofThiosphaera pantotrophaperiplasmic nitrate reductase. FEBS Letters, 1994, 345, 76-80.	1.3	61
208	The identification of a periplasmic nitrate reductase inParacoccus denitrificans. FEMS Microbiology Letters, 1993, 113, 107-111.	0.7	59
209	The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. FEBS Journal, 1993, 212, 377-385.	0.2	116
210	Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. FEBS Journal, 1993, 212, 467-476.	0.2	77
211	Purification of hydroxylamine oxidase fromThiosphaera pantotropha. FEBS Letters, 1993, 335, 246-250.	1.3	103
212	The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha. Archives of Microbiology, 1992, 157, 535-537.	1.0	72
213	Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. Correlation with photoinhibition studies. FEBS Journal, 1991, 199, 677-683.	0.2	53
214	The identification of cytochromes involved in the transfer of electrons to the periplasmic NO-3 reductase of Rhodobacter capsulatus and resolution of a soluble NO-3 -reductase - cytochrome-c552 redox complex. FEBS Journal, 1990, 194, 263-270.	0.2	48
215	Rhodobacter capsulatus strain BK5 possesses a membrane bound respiratory nitrate reductase rather than the periplasmic enzyme found in other strains. Archives of Microbiology, 1990, 154, 301-303.	1.0	17
216	Periplasmic and membrane-bound respiratory nitrate reductases inThiosphaera pantotropha. FEBS Letters, 1990, 265, 85-87.	1.3	219

#	Article	IF	CITATIONS
217	Electron transport pathways to nitrous oxide in Rhodobacter species. FEBS Journal, 1989, 185, 659-669.	0.2	32
218	Identification of cytochromes involved in electron transport to trimethylamine N-oxide/dimethylsulphoxide reductase in Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 973, 308-314.	0.5	38
219	The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Archives of Microbiology, 1988, 150, 131-137.	1.0	98