
Edward A Wasserman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11707640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cue Competition in Causality Judgments: The Role of Nonpresentation of Compound Stimulus Elements. Learning and Motivation, 1994, 25, 127-151.	1.2	460
2	Pavlovian appetitive contingencies and approach versus withdrawal to conditioned stimuli in pigeons Journal of Comparative and Physiological Psychology, 1974, 86, 616-627.	1.8	268
3	WHAT'S ELEMENTARY ABOUT ASSOCIATIVE LEARNING?. Annual Review of Psychology, 1997, 48, 573-607.	17.7	251
4	Concept Learning in Animals. Comparative Cognition and Behavior Reviews, 2008, 3, .	2.0	137
5	Attribution of Causality to Common and Distinctive Elements of Compound Stimuli. Psychological Science, 1990, 1, 298-302.	3.3	126
6	Assessment of an information integration account of contingency judgment with examination of subjective cell importance and method of information presentation Journal of Experimental Psychology: Learning Memory and Cognition, 1993, 19, 1363-1386.	0.9	110
7	Performance of pigeons on delayed simple and conditional discriminations under equivalent training procedures. Learning and Motivation, 1981, 12, 149-170.	1.2	100
8	TEMPORAL FACTORS INFLUENCING THE PIGEON'S SUCCESSIVE MATCHING-TO-SAMPLE PERFORMANCE: SAMPLE DURATION, INTERTRIAL INTERVAL, AND RETENTION INTERVAL1. Journal of the Experimental Analysis of Behavior, 1978, 30, 153-162.	1.1	99
9	Same–different conceptualization by baboons (Papio papio): The role of entropy Journal of Comparative Psychology (Washington, D C: 1983), 2001, 115, 42-52.	0.5	98
10	Variability Discrimination in Humans and Animals: Implications for Adaptive Action American Psychologist, 2004, 59, 879-890.	4.2	97
11	Behavioral deficits induced by bingelike exposure to alcohol in neonatal rats: Importance of developmental timing and number of episodes. , 1996, 29, 433-452.		92
12	The effect of redundant contextual stimuli on autoshaping the pigeon's keypeck. Learning and Behavior, 1973, 1, 198-206.	3.4	91
13	Discriminating the relation between relations: The role of entropy in abstract conceptualization by baboons (Papio papio) and humans (Homo sapiens) Journal of Experimental Psychology, 2001, 27, 316-328.	1.7	87
14	Same–different discrimination: The keel and backbone of thought and reasoning Journal of Experimental Psychology, 2010, 36, 3-22.	1.7	84
15	Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images. PLoS ONE, 2015, 10, e0141357.	2.5	77
16	ASSOCIATIVE SYMMETRY IN THE PIGEON AFTER SUCCESSIVE MATCHING-TO-SAMPLE TRAINING. Journal of the Experimental Analysis of Behavior, 2005, 84, 147-165.	1.1	76
17	Associative concept learning in animals. Journal of the Experimental Analysis of Behavior, 2014, 101, 130-151.	1.1	75
18	Causation and Association. Psychology of Learning and Motivation - Advances in Research and Theory, 1996, , 207-264.	1.1	74

#	Article	IF	CITATIONS
19	Stimulus-reinforcer predictiveness and selective discrimination learning in pigeons Journal of Experimental Psychology, 1974, 103, 284-297.	1.5	71
20	Categorical discrimination and generalization in pigeons: All negative stimuli are not created equal Journal of Experimental Psychology, 1992, 18, 193-207.	1.7	70
21	Error-driven learning in visual categorization and object recognition: A common-elements model Psychological Review, 2010, 117, 349-381.	3.8	68
22	Autoshaping chicks with heat reinforcement: The role of stimulus-reinforcer and response-reinforcer relations Journal of Experimental Psychology, 1975, 1, 158-169.	1.7	67
23	TRANSITIVE RESPONDING IN HOODED CROWS REQUIRES LINEARLY ORDERED STIMULI. Journal of the Experimental Analysis of Behavior, 2004, 82, 1-19.	1.1	67
24	Recent advances in operant conditioning technology: A versatile and affordable computerized touchscreen system. Behavior Research Methods, 2004, 36, 355-362.	1.3	64
25	COMPARATIVE PSYCHOLOGY RETURNS: A REVIEW OF HULSE, FOWLER, AND HONIG'S COGNITIVE PROCESSES IN ANIMAL BEHAVIOR1. Journal of the Experimental Analysis of Behavior, 1981, 35, 243-257.	1.1	61
26	Pigeons Are Sensitive to the Spatial Organization of Complex Visual Stimuli. Psychological Science, 1993, 4, 336-341.	3.3	61
27	Entropy detection by pigeons: Response to mixed visual displays after same–different discrimination training Journal of Experimental Psychology, 1997, 23, 157-170.	1.7	61
28	Pigeons show same-different conceptualization after training with complex visual stimuli Journal of Experimental Psychology, 1995, 21, 248-252.	1.7	60
29	Entropy and variability discrimination Journal of Experimental Psychology: Learning Memory and Cognition, 2001, 27, 278-293.	0.9	59
30	Successive matching-to-sample in the pigeon: Variations on a theme by Konorski. Behavior Research Methods, 1976, 8, 278-282.	4.0	56
31	MEMORY FOR SEQUENCES OF STIMULI AND RESPONSES. Journal of the Experimental Analysis of Behavior, 1980, 34, 49-59.	1.1	55
32	COLLEGE STUDENTS' RESPONDING TO AND RATING OF CONTINGENCY RELATIONS: THE ROLE OF TEMPORAL CONTIGUITY. Journal of the Experimental Analysis of Behavior, 1986, 46, 15-35.	1.1	55
33	Nonaccidental Properties Underlie Shape Recognition in Mammalian and Nonmammalian Vision. Current Biology, 2007, 17, 336-340.	3.9	54
34	Effects of geon deletion, scrambling, and movement on picture recognition in pigeons Journal of Experimental Psychology, 1998, 24, 34-46.	1.7	52
35	Multiple Methods for Examining Biased Information Use in Contingency Judgments. Organizational Behavior and Human Decision Processes, 1993, 55, 228-250.	2.5	51
36	Effect of stimulus orderability and reinforcement history on transitive responding in pigeons. Behavioural Processes, 2006, 72, 161-172.	1.1	51

#	Article	IF	CITATIONS
37	Pigeons concurrently categorize photographs at both basic and superordinate levels. Psychonomic Bulletin and Review, 2004, 11, 1111-1117.	2.8	48
38	Applying Bubbles to Localize Features That Control Pigeons' Visual Discrimination Behavior Journal of Experimental Psychology, 2005, 31, 376-382.	1.7	48
39	Learning and transfer of relational matching-to-sample by pigeons. Psychonomic Bulletin and Review, 2007, 14, 1107-1114.	2.8	48
40	Effects of number of items on the pigeon's discrimination of same from different visual displays Journal of Experimental Psychology, 1997, 23, 491-501.	1.7	47
41	Judging interevent relations: From cause to effect and from effect to cause. Memory and Cognition, 1993, 21, 802-808.	1.6	45
42	Effects of number of items and visual display variability onsame-different discrimination behavior. Memory and Cognition, 2006, 34, 1689-1703.	1.6	44
43	Similarity- and Nonsimilarity-Based Conceptualization in Children and Pigeons. Psychological Record, 1993, 43, 779-793.	0.9	43
44	Transitive inference in pigeons: Measuring the associative values of Stimuli B and D. Behavioural Processes, 2012, 89, 244-255.	1.1	43
45	Mechanisms of object recognition: what we have learned from pigeons. Frontiers in Neural Circuits, 2014, 8, 122.	2.8	42
46	Pigeons acquire multiple categories in parallel via associative learning: A parallel to human word learning?. Cognition, 2015, 136, 99-122.	2.2	42
47	Effects of Occlusion on Pigeons' Visual Object Recognition. Perception, 2002, 31, 1299-1312.	1.2	40
48	Visual object categorization in birds and primates: Integrating behavioral, neurobiological, and computational evidence within a "general process―framework. Cognitive, Affective and Behavioral Neuroscience, 2012, 12, 220-240.	2.0	40
49	TRACE AUTOSHAPING: ACQUISITION, MAINTENANCE, AND PATH DEPENDENCE AT LONG TRACE INTERVALS. Journal of the Experimental Analysis of Behavior, 1981, 36, 61-74.	1.1	39
50	Effects of number of items on the baboon's discrimination of same from different visual displays. Animal Cognition, 2001, 4, 163-170.	1.8	38
51	EFFECTS OF SPATIAL REARRANGEMENT OF OBJECT COMPONENTS ON PICTURE RECOGNITION IN PIGEONS. Journal of the Experimental Analysis of Behavior, 1996, 65, 465-475.	1.1	34
52	Serial causation: Occasion setting in a causal induction task. Memory and Cognition, 2000, 28, 1213-1230.	1.6	34
53	Evidence for a conceptual account of same-different discrimination learning in the pigeon. Psychonomic Bulletin and Review, 2001, 8, 677-684.	2.8	34
54	Surprise and change: Variations in the strength of present and absent cues in causal learning. Learning and Behavior, 2005, 33, 131-146.	3.4	34

#	Article	IF	CITATIONS
55	Information-seeking behavior: exploring metacognitive control in pigeons. Animal Cognition, 2013, 16, 241-254.	1.8	34
56	Discrimination of contour-deleted images by pigeons Journal of Experimental Psychology, 1992, 18, 387-399.	1.7	33
57	Conditional same-different discrimination by pigeons: Acquisition and generalization to novel and few-item displays Journal of Experimental Psychology, 2010, 36, 23-38.	1.7	33
58	Effects of differential reinforcement expectancies on successful matching-to-sample performance in pigeons Journal of Experimental Psychology, 1981, 7, 394-412.	1.7	32
59	Anterior cingulate cortex inactivation impairs rodent visual selective attention and prospective memory Behavioral Neuroscience, 2016, 130, 75-90.	1.2	32
60	Detecting variety: What's so special about uniformity?. Journal of Experimental Psychology: General, 2002, 131, 131-143.	2.1	31
61	Memory-basedsame-different conceptualization by pigeons. Psychonomic Bulletin and Review, 1997, 4, 552-558.	2.8	30
62	Prior experience affects amodal completion in pigeons. Perception & Psychophysics, 2007, 69, 596-605.	2.3	30
63	Asymmetrical interactions in the perception of face identity and emotional expression are not unique to the primate visual system. Journal of Vision, 2011, 11, 24-24.	0.3	30
64	The pigeon's recognition of drawings of depth-rotated stimuli Journal of Experimental Psychology, 1996, 22, 205-221.	1.7	29
65	The what and the where of the pigeon's processing of complex visual stimuli Journal of Experimental Psychology, 1996, 22, 60-67.	1.7	29
66	Transposition in pigeons: reassessing spence (1937) with multiple discrimination training. Learning and Behavior, 2005, 33, 22-46.	3.4	29
67	Non-cortical magnitude coding of space and time by pigeons. Current Biology, 2017, 27, R1264-R1265.	3.9	29
68	Selective attention in rat visual category learning. Learning and Memory, 2019, 26, 84-92.	1.3	28
69	CONDITIONING OF TWO-RESPONSE PATTERNS OF KEY PECKING IN PIGEONS1. Journal of the Experimental Analysis of Behavior, 1979, 31, 23-29.	1.1	27
70	Superordinate category formation in pigeons: Association with a common delay or probability of food reinforcement makes perceptually dissimilar stimuli functionally equivalent Journal of Experimental Psychology, 1999, 25, 415-432.	1.7	27
71	Pigeons and humans are more sensitive to nonaccidental than to metric changes in visual objects. Behavioural Processes, 2008, 77, 199-209.	1.1	27
72	Multiple-pair training enhances transposition in pigeons. Learning and Behavior, 2008, 36, 174-187.	1.0	26

#	Article	IF	CITATIONS
73	Nonverbal transitive inference: Effects of task and awareness on human performance. Behavioural Processes, 2010, 83, 99-112.	1.1	26
74	DELAYED TEMPORAL DISCRIMINATION IN PIGEONS: A COMPARISON OF TWO PROCEDURES. Journal of the Experimental Analysis of Behavior, 1987, 47, 299-309.	1.1	25
75	A behavioral Analysis of Concepts: Its Application to Pigeons and Children. Psychology of Learning and Motivation - Advances in Research and Theory, 1994, , 73-132.	1.1	25
76	Same–different categorization in rats. Learning and Memory, 2012, 19, 142-145.	1.3	25
77	Seeing things from a different angle: The pigeon's recognition of single geons rotated in depth Journal of Experimental Psychology, 2000, 26, 115-132.	1.7	24
78	Judging response-outcome relations: The role of response-outcome contingency, outcome probability, and method of information presentation. Memory and Cognition, 1984, 12, 270-286.	1.6	23
79	Judging interevent contingencies: Being right for the wrong reasons. Bulletin of the Psychonomic Society, 1986, 24, 91-94.	0.2	23
80	Discrimination of geons by pigeons: The effects of variations in surface depiction. Learning and Behavior, 2001, 29, 97-106.	3.4	23
81	Learning an object from multiple views enhances its recognition in an orthogonal rotational axis in pigeons. Vision Research, 2002, 42, 2051-2062.	1.4	23
82	Stimulus control by same-versus-different relations among multiple visual stimuli Journal of Experimental Psychology, 2002, 28, 347-357.	1.7	22
83	The Role of Edges in Object Recognition by Pigeons. Perception, 2005, 34, 1353-1374.	1.2	22
84	Effects of stimulus manipulations on visual categorization in pigeons. Behavioural Processes, 2006, 72, 224-233.	1.1	22
85	Pigeons' Recognition of Partially Occluded Objects Depends on Specific Training Experience. Perception, 2007, 36, 33-48.	1.2	22
86	Novelty and functional equivalence in superordinate categorization by pigeons. Learning and Behavior, 1998, 26, 125-138.	3.4	21
87	Positive and negative patterning in human causal learning. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2000, 53, 121-138.	2.8	21
88	Figure-ground assignment in pigeons: Evidence for a figural benefit. Perception & Psychophysics, 2006, 68, 711-724.	2.3	21
89	Categorization of photographic images by rats using shape-based image dimensions Journal of Experimental Psychology, 2013, 39, 85-92.	1.7	21
90	Detecting variety: What's so special about uniformity?. Journal of Experimental Psychology: General, 2002, 131, 131-143.	2.1	20

#	Article	IF	CITATIONS
91	Comparative Cognition: Toward a General Understanding of Cognition in Behavior. Psychological Science, 1993, 4, 156-161.	3.3	19
92	The pigeon's variability discrimination with lists of successively presented visual stimuli Journal of Experimental Psychology, 1999, 25, 475-490.	1.7	19
93	Pre-crastination in the pigeon. Psychonomic Bulletin and Review, 2015, 22, 1130-1134.	2.8	19
94	Executive control and task switching in pigeons. Cognition, 2016, 146, 121-135.	2.2	19
95	Analyzing the random control procedure: Effects of paired and unpaired CSs and USs on autoshaping the chick's key peck with heat reinforcement. Learning and Motivation, 1977, 8, 467-487.	1.2	18
96	RATE AND TEMPORAL PATTERN OF KEY PECKING UNDER AUTOSHAPING AND OMISSION SCHEDULES OF REINFORCEMENT1. Journal of the Experimental Analysis of Behavior, 1977, 27, 399-405.	1.1	18
97	Pigeons' tracking of relevant attributes in categorization learning Journal of Experimental Psychology Animal Learning and Cognition, 2014, 40, 195-211.	0.5	18
98	Association of conditioned stimuli during serial conditioning by pigeons. Learning and Behavior, 1978, 6, 52-56.	3.4	17
99	Effects of signaled retention intervals on pigeon short-term memory. Learning and Behavior, 1982, 10, 330-338.	3.4	17
100	Choice behavior of pigeons on progressive and multiple schedules: A test of optimal foraging theory Journal of Experimental Psychology, 1987, 13, 40-51.	1.7	17
101	Short Article: Backward Blocking: The Role of Within-Compound Associations and Interference between Cues Trained Apart. Quarterly Journal of Experimental Psychology, 2008, 61, 185-193.	1.1	17
102	Integrality/separability of stimulus dimensions and multidimensional generalization in pigeons Journal of Experimental Psychology, 2010, 36, 194-205.	1.7	17
103	Missing the Forest for the Trees. Psychological Science, 2010, 21, 1510-1517.	3.3	17
104	Categories and Concepts in Animals â~†. , 2017, , 111-139.		17
105	Cue competition in causality judgments: The role of manner of information presentation. Bulletin of the Psychonomic Society, 1993, 31, 457-460.	0.2	16
106	Attentional Trade-offs in Pigeons Learning to Discriminate Newly Relevant Visual Stimulus Dimensions. Learning and Motivation, 2001, 32, 240-253.	1.2	16
107	A theory of variability discrimination: Finding differences. Psychonomic Bulletin and Review, 2007, 14, 805-822.	2.8	16
108	Amodal Completion of Moving Objects by Pigeons. Perception, 2008, 37, 557-570.	1.2	16

#	Article	IF	CITATIONS
109	Conceptualization in pigeons: The evolution of a paradigm. Behavioural Processes, 2016, 123, 4-14.	1.1	16
110	Dorsal hippocampus is necessary for visual categorization in rats. Hippocampus, 2018, 28, 392-405.	1.9	16
111	DIFFERENTIAL AUTOSHAPING TO COMMON AND DISTINCTIVE ELEMENTS OF POSITIVE AND NEGATIVE DISCRIMINATIVE STIMULI1. Journal of the Experimental Analysis of Behavior, 1974, 22, 491-496.	1.1	15
112	Object discrimination by pigeons: effects of object color and shape. Behavioural Processes, 2005, 69, 17-31.	1.1	15
113	Same/different discrimination learning with trial-unique stimuli. Psychonomic Bulletin and Review, 2008, 15, 644-650.	2.8	15
114	Effect of between-category similarity on basic level superiority in pigeons. Behavioural Processes, 2010, 85, 236-245.	1.1	15
115	SPECIES, TEPEES, SCOTTIES, AND JOCKEYS: SELECTED BY CONSEQUENCES. Journal of the Experimental Analysis of Behavior, 2012, 98, 213-226.	1.1	15
116	View-invariance learning in object recognition by pigeons depends on error-driven associative learning processes. Vision Research, 2012, 62, 148-161.	1.4	15
117	Pigeons learn virtual patterned-string problems in a computerized touch screen environment. Animal Cognition, 2013, 16, 737-753.	1.8	15
118	Sooner Rather Than Later: Precrastination Rather Than Procrastination. Current Directions in Psychological Science, 2019, 28, 229-233.	5.3	15
119	CONDITIONING OF WITHIN-TRIAL PATTERNS OF KEY PECKING IN PIGEONS1. Journal of the Experimental Analysis of Behavior, 1977, 28, 213-220.	1.1	14
120	Temporal Order and Duration: Their Discrimination and Retention by Pigeons. Annals of the New York Academy of Sciences, 1984, 423, 103-115.	3.8	14
121	The science of animal cognition: Past, present, and future Journal of Experimental Psychology, 1997, 23, 123-135.	1.7	14
122	Display variability and spatial organization as contributors to the pigeon's discrimination of complex visual stimuli Journal of Experimental Psychology, 2000, 26, 133-143.	1.7	14
123	Pigeons exhibit contextual cueing to both simple and complex backgrounds. Behavioural Processes, 2014, 104, 44-52.	1.1	14
124	Precrastination: The fierce urgency of now. Learning and Behavior, 2019, 47, 7-28.	1.0	14
125	THE DISRUPTION OF AUTOSHAPED KEY PECKING IN THE PIGEON BY FOOD-TRAY ILLUMINATION1. Journal of the Experimental Analysis of Behavior, 1974, 22, 39-45.	1.1	13
126	Limited attention and cue order consistency affect predictive learning: A test of similarity measures Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 484-496.	0.9	13

#	Article	IF	CITATIONS
127	The pigeon's discrimination of visual entropy: A logarithmic function. Learning and Behavior, 2002, 30, 306-314.	3.4	13
128	Feature predictiveness and selective attention in pigeons' categorization learning Journal of Experimental Psychology Animal Learning and Cognition, 2017, 43, 231-242.	0.5	13
129	7 Mediating associations, essentialism, and nonsimilarity-based categorization. Advances in Psychology, 1996, , 111-133.	0.1	12
130	Time-course of control by specific stimulus features and relational cues during same-different discrimination training. Learning and Behavior, 2004, 32, 183-189.	3.4	12
131	A category-overshadowing effect in pigeons: Support for the Common Elements Model of object categorization learning Journal of Experimental Psychology, 2012, 38, 322-328.	1.7	12
132	Scene-based contextual cueing in pigeons Journal of Experimental Psychology Animal Learning and Cognition, 2014, 40, 401-418.	0.5	12
133	Selective and distributed attention in human and pigeon category learning. Cognition, 2020, 204, 104350.	2.2	12
134	On Cognitive and Behavioral Orientations to the Language of Behavior Analysis: Why be Concerned Over the Differences?. Psychological Record, 1983, 33, 3-30.	0.9	11
135	Explicitly unpaired key light and food presentations: Interference with subsequent auto-shaped key pecking in pigeons Journal of Experimental Psychology, 1975, 1, 30-38.	1.7	10
136	FURTHER REMARKS ON THE ROLE OF COGNITION IN THE COMPARATIVE ANALYSIS OF BEHAVIOR. Journal of the Experimental Analysis of Behavior, 1982, 38, 211-216.	1.1	10
137	Picture Perception: A Bird's-Eye View. Current Directions in Psychological Science, 1993, 2, 184-189.	5.3	10
138	Object discrimination in pigeons: Effects of local and global cues. Vision Research, 2006, 46, 1361-1374.	1.4	10
139	Changes in area affect figure–ground assignment in pigeons. Vision Research, 2010, 50, 497-508.	1.4	10
140	Humans deploy diverse strategies in learning same–different discrimination tasks. Behavioural Processes, 2013, 93, 125-139.	1.1	10
141	A three-component model of relational responding in the transposition paradigm Journal of Experimental Psychology Animal Learning and Cognition, 2014, 40, 63-80.	0.5	10
142	No evidence for feature binding by pigeons in a change detection task. Behavioural Processes, 2016, 123, 90-106.	1.1	10
143	Cognitive flexibility and memory in pigeons, human children, and adults. Cognition, 2018, 177, 30-40.	2.2	10
144	Pigeons exhibit flexibility but not rule formation in dimensional learning, stimulus generalization, and task switching Journal of Experimental Psychology Animal Learning and Cognition, 2020, 46, 107-123.	0.5	10

#	Article	IF	CITATIONS
145	Stimulus control by same-versus-different relations among multiple visual stimuli. Journal of Experimental Psychology, 2002, 28, 347-57.	1.7	10
146	US duration and local trial spacing affect autoshaped responding. Learning and Behavior, 1982, 10, 490-498.	3.4	9
147	Effects of sample duration, retention interval, and passage of time in the test on pigeons' matching-to-sample performance. Learning and Behavior, 1985, 13, 121-128.	3.4	9
148	Not all same-different discriminations are created equal: Evidence contrary to a unidimensional account of same-different learning. Learning and Motivation, 2006, 37, 189-208.	1.2	9
149	Effects of stimulus duration and choice delay on visual categorization in pigeons. Learning and Motivation, 2009, 40, 132-146.	1.2	9
150	Comparative Vision Science: Seeing Eye to Eye Comparative Cognition and Behavior Reviews, 2010, 5, 148-154.	2.0	9
151	How special is sameness for pigeons and people?. Animal Cognition, 2012, 15, 891-902.	1.8	9
152	Figure–ground discrimination in the avian brain: The nucleus rotundus and its inhibitory complex. Vision Research, 2012, 70, 18-26.	1.4	9
153	Stimulus selection with duration as a relevant cue. Learning and Motivation, 1985, 16, 259-287.	1.2	8
154	The pigeon's discrimination of shape and location information. Visual Cognition, 2000, 7, 417-436.	1.6	8
155	The dimensional nature of same–different discrimination behavior in pigeons Journal of Experimental Psychology, 2011, 37, 361-367.	1.7	8
156	How do crows and parrots come to spontaneously perceive relations-between-relations?. Current Opinion in Behavioral Sciences, 2021, 37, 109-117.	3.9	8
157	Recognition-by-ComponentsA Bird's Eye View. , 2012, , 191-215.		8
158	Limited attention and cue order consistency affect predictive learning: A test of similarity measures Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 484-496.	0.9	8
159	Amodal completion in bonobos. Learning and Motivation, 2010, 41, 174-186.	1.2	7
160	Associative Concept Learning in Animals: Issues and Opportunities. Journal of the Experimental Analysis of Behavior, 2014, 101, 165-170.	1.1	7
161	Attentional shifts in categorization learning: Perseveration but not learned irrelevance. Behavioural Processes, 2016, 123, 63-73.	1.1	7
162	Prelimbic cortex maintains attention to category-relevant information and flexibly updates category representations. Neurobiology of Learning and Memory, 2021, 185, 107524.	1.9	7

#	Article	IF	CITATIONS
163	Pigeons deploy selective attention to efficiently learn a stagewise multidimensional visual discrimination task Journal of Experimental Psychology Animal Learning and Cognition, 2018, 44, 162-167.	0.5	7
164	A DIRECT FLUID DELIVERY SYSTEM FOR THE PIGEON1. Journal of the Experimental Analysis of Behavior, 1979, 31, 285-288.	1.1	6
165	Pigeons learn stimulus identity and stimulus relations when both serve as redundant, relevant cues during same-different discrimination training Journal of Experimental Psychology, 2003, 29, 84-91.	1.7	6
166	Judgments of causal efficacy under constant and changing interevent contingencies. Behavioural Processes, 2007, 74, 251-264.	1.1	6
167	Object-specific and relational learning in pigeons. Animal Cognition, 2015, 18, 205-218.	1.8	6
168	Unsupervised learning of complex associations in an animal model. Cognition, 2018, 173, 28-33.	2.2	6
169	Bidirectional conditioning: Revisiting Asratyan's â€~alternating' training technique. Neurobiology of Learning and Memory, 2020, 171, 107211.	1.9	6
170	Response rate is not an effective mediator of learned stimulus equivalence in pigeons. Learning and Behavior, 2005, 33, 287-295.	1.0	5
171	Discrimination blocking: Acquisition versus performance deficits in human contingency learning. Learning and Behavior, 2007, 35, 149-162.	1.0	5
172	Effects of stimulus size and spatial organization on pigeons' conditional same–different discrimination. Behavioural Processes, 2010, 83, 162-171.	1.1	5
173	Categorical Discrimination in Humans and Animals. Psychology of Learning and Motivation - Advances in Research and Theory, 2012, 56, 145-184.	1.1	5
174	Effects of training condition on the contribution of specific items to relational processing in baboons (Papio papio). Animal Cognition, 2014, 17, 911-924.	1.8	5
175	Learning in rich networks involves both positive and negative associations Journal of Experimental Psychology: General, 2016, 145, 1062-1074.	2.1	5
176	Pigeons spontaneously form three-dimensional shape categories. Behavioural Processes, 2019, 158, 70-76.	1.1	5
177	Concept learning without differential reinforcement in pigeons by means of contextual cueing Journal of Experimental Psychology Animal Learning and Cognition, 2016, 42, 221-227.	0.5	5
178	The Lords of the Rings: People and pigeons take different paths mastering the concentric-rings categorization task. Cognition, 2022, 218, 104920.	2.2	5
179	Response bias in the yoked control procedure. Behavioral and Brain Sciences, 1988, 11, 477.	0.7	4
180	Rats and infants as propositional reasoners: A plausible possibility?. Behavioral and Brain Sciences, 2009, 32, 203-204.	0.7	4

#	Article	IF	CITATIONS
181	Monitoring same/different discrimination behavior in time and space: Finding differences and anticipatory discrimination behavior. Psychonomic Bulletin and Review, 2010, 17, 250-256.	2.8	4
182	Variations on variability: effects of display composition on same–different discrimination in pigeons. Learning and Behavior, 2012, 40, 416-426.	1.0	4
183	Stagewise multidimensional visual discrimination by pigeons. Journal of the Experimental Analysis of Behavior, 2016, 106, 58-74.	1.1	4
184	Taking pigeons to heart: Birds proficiently diagnose human cardiac disease. Learning and Behavior, 2020, 48, 9-21.	1.0	4
185	Mechanisms of same–different conceptualization: entropy happens!. Current Opinion in Behavioral Sciences, 2021, 37, 19-28.	3.9	4
186	Pigeon category learning: Revisiting the Shepard, Hovland, and Jenkins (1961) tasks Journal of Experimental Psychology Animal Learning and Cognition, 2019, 45, 174-184.	0.5	4
187	Pigeons learn stimulus identity and stimulus relations when both serve as redundant, relevant cues during same-different discrimination training. Journal of Experimental Psychology, 2003, 29, 84-91.	1.7	4
188	BRIEF PRESENTATIONS ARE SUFFICIENT FOR PIGEONS TO DISCRIMINATE ARRAYS OF SAME AND DIFFERENT STIMULI. Journal of the Experimental Analysis of Behavior, 2002, 78, 365-373.	1.1	3
189	Contrasting object-based and texture-based accounts of same/different discrimination learning with trial-unique stimuli Journal of Experimental Psychology, 2010, 36, 158-163.	1.7	3
190	Animal learning. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 89-98.	2.8	3
191	Validating the virtual string task with the gap test. Animal Cognition, 2014, 17, 1427-1431.	1.8	3
192	Assessing the acquisition of anticipatory responding in the pigeon using reaction time Journal of Experimental Psychology Animal Learning and Cognition, 2017, 43, 197-203.	0.5	3
193	The Pecking Pigeon: A Model of Complex Visual Processing. PsycCritiques, 1991, 36, 605-606.	0.0	3
194	Assessing Attention in Category Learning by Animals. Current Directions in Psychological Science, 2021, 30, 495-502.	5.3	3
195	The role of the magazine-response contingency on signal-directed responding in pigeons. Learning and Motivation, 1984, 15, 156-172.	1.2	2
196	Common Versus Distinctive Species: On the Logic of Behavioral Comparison. The Behavior Analyst, 1994, 17, 221-223.	2.5	2
197	Development and evolution of cognition: One doth not fly into flying!. Behavioral and Brain Sciences, 2008, 31, 400-401.	0.7	2
198	Discrimination of coherent and incoherent motion by pigeons: An investigation using a same-different motion discrimination task. Behavioural Processes, 2013, 93, 116-124.	1.1	2

#	Article	IF	CITATIONS
199	Promoting rotational-invariance in object recognition despite experience with only a single view. Behavioural Processes, 2016, 123, 107-113.	1.1	2
200	Thinking abstractly like a duck(ling). Science, 2016, 353, 222-223.	12.6	2
201	Capuchin monkeys can make and use stone tools. Learning and Behavior, 2017, 45, 103-104.	1.0	2
202	The role of category density in pigeons' tracking of relevant information. Learning and Behavior, 2019, 47, 234-244.	1.0	2
203	Two-item conditional same–different categorization in pigeons: Finding differences Journal of Experimental Psychology Animal Learning and Cognition, 2021, 47, 455-463.	0.5	2
204	Stepwise conceptualization in pigeons Journal of Experimental Psychology Animal Learning and Cognition, 2016, 42, 44-50.	0.5	2
205	Ecology and learning: Some historical and analytical perspectives. Behavioral and Brain Sciences, 1983, 6, 183-184.	0.7	1
206	The potential of pigeons as surrogate observers in medical image perception studies. Proceedings of SPIE, 2016, , .	0.8	1
207	Introduction to the special issue on comparative cognition. Journal of the Experimental Analysis of Behavior, 2016, 105, 1-2.	1.1	1
208	Relational Concept Learning in Birds. , 0, , 229-248.		1
209	Perceptual and Abstract Category Learning in Pigeons. , 2017, , 709-732.		1
210	Should I stay or should I go? Pigeons' (Columba livia) performance of a foraging task has implications for optimal foraging theory and serial pattern learning Journal of Comparative Psychology (Washington, D C: 1983), 2021, 135, 266-272.	0.5	1
211	Pigeons proficiently switch among four tasks without cost Journal of Experimental Psychology Animal Learning and Cognition, 2021, 47, 150-162.	0.5	1
212	Categorical Learning in Pigeons. , 2012, , 512-515.		1
213	Bindra's theory: some successes and precursors. Behavioral and Brain Sciences, 1978, 1, 80-81.	0.7	0
214	On possible discontinuities between human and nonhuman minds. Behavioral and Brain Sciences, 2008, 31, 151-152.	0.7	0
215	Using the reassignment procedure to test object representation in pigeons and people. Learning and Behavior, 2015, 43, 188-207.	1.0	0
216	Face facts: Even nonhuman animals discriminate human faces. Learning and Behavior, 2016, 44, 307-308.	1.0	0

#	Article	IF	CITATIONS
217	The Evolution of the Violin. , 2021, , 250-256.		Ο
218	Context, Consequence, and Coincidence. , 2021, , 287-308.		0
219	Retrospective Revaluation. , 2018, , 1-4.		0
220	Retrospective Revaluation. , 2022, , 6011-6013.		0