Sneha Ramakrishna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1170578/publications.pdf

Version: 2024-02-01

21 papers

2,481 citations

759233 12 h-index 18 g-index

21 all docs

21 docs citations

times ranked

21

3116 citing authors

#	Article	IF	CITATIONS
1	GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 2022, 603, 934-941.	27.8	339
2	Abstract CT142: GD2.Ox40.CD28.z CAR T cell trial in neuroblastoma and osteosarcoma. Cancer Research, 2022, 82, CT142-CT142.	0.9	1
3	CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR–refractory large B-cell lymphoma. Blood, 2021, 137, 2321-2325.	1.4	51
4	EPCT-14. GD2 CAR T-CELLS MEDIATE CLINICAL ACTIVITY AND MANAGEABLE TOXICITY IN CHILDREN AND YOUNG ADULTS WITH H3K27M-MUTATED DIPG AND SPINAL CORD DMG. Neuro-Oncology, 2021, 23, i49-i50.	1.2	6
5	CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nature Medicine, 2021, 27, 1419-1431.	30.7	273
6	Abstract CT031: GD2 CAR T cells mediate clinical activity and manageable toxicity in children and young adults with DIPG and H3K27M-mutated diffuse midline gliomas. , 2021 , , .		7
7	Use of cardiac radiation therapy as bridging therapy to CARâ€T for relapsed pediatric Bâ€cell acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2021, 68, e28870.	1.5	8
8	CD22-CAR T-Cell Therapy Mediates High Durable Remission Rates in Adults with Large B-Cell Lymphoma Who Have Relapsed after CD19-CAR T-Cell Therapy. Blood, 2021, 138, 741-741.	1.4	4
9	Using single-cell analysis to predict CAR T cell outcomes. Nature Medicine, 2020, 26, 1813-1814.	30.7	2
10	Identification of dual positive CD19+/CD3+ T cells in a leukapheresis product undergoing CAR transduction: a case report., 2020, 8, e001073.		2
11	Use of Chimeric Antigen Receptor Modified T Cells With Extensive Leukemic Myocardial Involvement. JACC: CardioOncology, 2020, 2, 666-670.	4.0	0
12	Prospects and challenges for use of CAR T cell therapies in solid tumors. Expert Opinion on Biological Therapy, 2020, 20, 503-516.	3.1	37
13	Delayed cancer diagnoses and high mortality in children during the COVIDâ€19 pandemic. Pediatric Blood and Cancer, 2020, 67, e28427.	1.5	61
14	Supercharging your CAR. Blood, 2020, 135, 593-594.	1.4	2
15	Immunotherapy for the Treatment of Acute Lymphoblastic Leukemia. Current Oncology Reports, 2020, 22, 11.	4.0	13
16	Modulation of Target Antigen Density Improves CAR T-cell Functionality and Persistence. Clinical Cancer Research, 2019, 25, 5329-5341.	7.0	130
17	Phase I Trial Using CD19/CD22 Bispecific CAR T Cells in Pediatric and Adult Acute Lymphoblastic Leukemia (ALL). Blood, 2019, 134, 744-744.	1.4	42
18	Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22. Molecular Therapy - Oncolytics, 2018, 11, 127-137.	4.4	191

#	Article	IF	CITATIONS
19	CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine, 2018, 24, 20-28.	30.7	1,030
20	Novel CD19/CD22 Bicistronic Chimeric Antigen Receptors Outperform Single or Bivalent Cars in Eradicating CD19+CD22+, CD19-, and CD22- Pre-B Leukemia. Blood, 2017, 130, 810-810.	1.4	24
21	Reduction of MDSCs with All-trans Retinoic Acid Improves CAR Therapy Efficacy for Sarcomas. Cancer Immunology Research, 2016, 4, 869-880.	3.4	258