Serge I Gorelsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11703678/publications.pdf

Version: 2024-02-01

57	6,916	35	61
papers	citations	h-index	g-index
68	68	68	6851 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Quantitative descriptors of electronic structure in the framework of molecular orbital theory. Advances in Inorganic Chemistry, 2019, 73, 191-219. Rational Syntheses and Serendipity: Complexes [LSnPtCl ₂ (SMe ₂)] ₂ ,	0.4	1
2	[{LSnPtCl(SMe _{2< sub>)}_{2< sub>2< sub>); [{LSnPtCl(SMe_{2< sub>)}_{2< sub>SnCl_{2< sub>], [(LSn)_{3< sub>(PtCl_{2< sub>)(PtClSnCl){LSn(Cl)OH}], and [O(SnCl)_{2< sub>(SnL)_{2< sub>) with L=MeN(CH_{2< sub>CMe_{2< sub>O)_{2< sub>. Chemistry - A European Journal, 2018, 24,}}}}}}}}}}}}	1.7	5
3	L=MeN(CH ₂ CMe _{C)} C/sub>	1.7	17
4	Iron(II) Complexes of a Hemilabile SNS Amido Ligand: Synthesis, Characterization, and Reactivity. Inorganic Chemistry, 2017, 56, 13766-13776.	1.9	22
5	Selective Activation of Fluoroalkenes with Nâ∈Heterocyclic Carbenes: Synthesis of Nâ∈Heterocyclic Fluoroalkenes and Polyfluoroalkenyl Imidazolium Salts. Chemistry - A European Journal, 2016, 22, 8063-8067.	1.7	30
6	Intramolecular Alkene Aminocarbonylation Using Concerted Cycloadditions of Aminoâ€ksocyanates. Chemistry - A European Journal, 2016, 22, 7906-7916.	1.7	19
7	Mononuclear, Dinuclear, and Trinuclear Iron Complexes Featuring a New Monoanionic SNS Thiolate Ligand. Inorganic Chemistry, 2016, 55, 987-997.	1.9	23
8	Perfluoroalkyl Cobalt(III) Fluoride and Bis(perfluoroalkyl) Complexes: Catalytic Fluorination and Selective Difluorocarbene Formation. Journal of the American Chemical Society, 2015, 137, 16064-16073.	6.6	63
9	A T-shaped Ni[îº ² -(CF ₂) ₄ –] NHC complex: unusual C _{sp3} –F and M–C ^F bond functionalization reactions. Chemical Science, 2015, 6, 6392-6397.	3.7	41
10	How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. Inorganic Chemistry, 2015, 54, 4909-4926.	1.9	76
11	Slow Magnetic Relaxation in Uranium(III) and Neodymium(III) Cyclooctatetraenyl Complexes. Organometallics, 2015, 34, 1415-1418.	1.1	76
12	Identifying Homocouplings as Critical Side Reactions in Direct Arylation Polycondensation. ACS Macro Letters, 2014, 3, 819-823.	2.3	111
13	Synthesis and coordination chemistry of a potential precursor to a triarylamminium radical cation ditopic ligand. Polyhedron, 2013, 52, 1118-1125.	1.0	О
14	Molecular and Electronic Structures of Complexes Containing 1-(2-pyridylazo)-2-phenanthrol (PAPL): Revisiting a Redox-Active Ligand. Inorganic Chemistry, 2013, 52, 13021-13028.	1.9	23
15	Influence of the Ligand Field on Slow Magnetization Relaxation versus Spin Crossover in Mononuclear Cobalt Complexes. Angewandte Chemie - International Edition, 2013, 52, 11290-11293.	7.2	192
16	Diastereoselective Hydrogenâ€Transfer Reactions: An Experimental and DFT Study. Chemistry - A European Journal, 2013, 19, 9308-9318.	1.7	16
17	Origins of regioselectivity of the palladium-catalyzed (aromatic)CH bond metalation–deprotonation. Coordination Chemistry Reviews, 2013, 257, 153-164.	9.5	257
18	An Organometallic Building Block Approach To Produce a Multidecker 4 <i>f</i> Single-Molecule Magnet. Journal of the American Chemical Society, 2013, 135, 3502-3510.	6.6	189

#	Article	IF	CITATIONS
19	Noncovalent Interactions of Metal Cations and Arenes Probed with Thallium(I) Complexes. Inorganic Chemistry, 2013, 52, 5749-5756.	1.9	22
20	Catalytic H/D Exchange of Unactivated Aliphatic C–H Bonds. Organometallics, 2013, 32, 6599-6604.	1.1	24
21	First structural evidence for multiple alkali metals between sandwich decks in a metallocene. Dalton Transactions, 2012, 41, 8060.	1.6	15
22	Tuning the Regioselectivity of Palladium-Catalyzed Direct Arylation of Azoles by Metal Coordination. Organometallics, 2012, 31, 794-797.	1.1	61
23	Analysis of the Palladium-Catalyzed (Aromatic)C–H Bond Metalation–Deprotonation Mechanism Spanning the Entire Spectrum of Arenes. Journal of Organic Chemistry, 2012, 77, 658-668.	1.7	380
24	Complexes with a Single Metal–Metal Bond as a Sensitive Probe of Quality of Exchange-Correlation Functionals. Journal of Chemical Theory and Computation, 2012, 8, 908-914.	2.3	54
25	Reactivity and Regioselectivity of Palladium-Catalyzed Direct Arylation in Noncooperative and Cooperative Processes. Organometallics, 2012, 31, 4631-4634.	1.1	35
26	Vinyl Oxidative Coupling as a Synthetic Route to Catalytically Active Monovalent Chromium. Journal of the American Chemical Society, 2011, 133, 6388-6395.	6.6	48
27	Characterization of Divalent and Trivalent Species Generated in the Chemical and Electrochemical Oxidation of a Dimeric Pincer Complex of Nickel. Inorganic Chemistry, 2011, 50, 2661-2674.	1.9	48
28	Preparation and Characterization of a Reduced Chromium Complex via Vinyl Oxidative Coupling: Formation of a Self-Activating Catalyst for Selective Ethylene Trimerization. Journal of the American Chemical Society, 2011, 133, 6380-6387.	6.6	43
29	An Organometallic Sandwich Lanthanide Single-Ion Magnet with an Unusual Multiple Relaxation Mechanism. Journal of the American Chemical Society, 2011, 133, 19286-19289.	6.6	257
30	New Self-Activating Organochromium Catalyst Precursor for Selective Ethylene Trimerization Organometallics, 2011, 30, 4201-4210.	1.1	34
31	Importance of Out-of-State Spin–Orbit Coupling for Slow Magnetic Relaxation in Mononuclear Fe ^{II} Complexes. Journal of the American Chemical Society, 2011, 133, 15806-15809.	6.6	202
32	Rhodium(III)-Catalyzed Heterocycle Synthesis Using an Internal Oxidant: Improved Reactivity and Mechanistic Studies. Journal of the American Chemical Society, 2011, 133, 6449-6457.	6.6	865
33	Palladium atalyzed Carbocyclization of Alkynyl Ketones Proceeding through a Carbopalladation Pathway. Angewandte Chemie - International Edition, 2011, 50, 2342-2345.	7.2	85
34	Mechanistic Analysis of Iridium(III) Catalyzed Direct CH Arylations: A DFT Study. Chemistry - A European Journal, 2011, 17, 13847-13853.	1.7	33
35	Iron(II) complexes containing thiophene-substituted "bispicen―ligands — Spin-crossover, ligand rearrangements, and ferromagnetic interactions. Canadian Journal of Chemistry, 2010, 88, 954-963.	0.6	10
36	Modulating Reactivity and Diverting Selectivity in Palladium-Catalyzed Heteroaromatic Direct Arylation Through the Use of a Chloride Activating/Blocking Group. Journal of Organic Chemistry, 2010, 75, 1047-1060.	1.7	299

3

#	Article	IF	CITATIONS
37	Investigation of the Mechanism of C(sp ³)â^'H Bond Cleavage in Pd(0)-Catalyzed Intramolecular Alkane Arylation Adjacent to Amides and Sulfonamides. Journal of the American Chemical Society, 2010, 132, 10692-10705.	6.6	255
38	Disubstituted 1,8-Diamidonaphthalene Ligands as a Flexible, Responsive, and Reactive Framework for Tantalum Complexes. Inorganic Chemistry, 2010, 49, 5231-5240.	1.9	9
39	Mechanistic Analysis of Azine $\langle i \rangle N \langle i \rangle$ -Oxide Direct Arylation: Evidence for a Critical Role of Acetate in the Pd(OAc) $\langle sub \rangle 2 \langle sub \rangle$ Precatalyst. Journal of Organic Chemistry, 2010, 75, 8180-8189.	1.7	203
40	Regioselective Oxidative Arylation of Indoles Bearing <i>N-</i> Alkyl Protecting Groups: Dual Câ [*] H Functionalization via a Concerted Metalationâ [*] Deprotonation Mechanism. Journal of the American Chemical Society, 2010, 132, 14676-14681.	6.6	277
41	Attempting to Reduce the Irreducible: Preparation of a Rare Paramagnetic Thorium Species. Organometallics, 2010, 29, 692-702.	1.1	43
42	Combining oximes with azides to create a novel 1-D [NaCo ^{III} ₂] system: synthesis, structure and solid-state NMR. Dalton Transactions, 2010, 39, 1504-1510.	1.6	9
43	Extended charge decomposition analysis and its application for the investigation of electronic relaxation. Theoretical Chemistry Accounts, 2008, 119, 57-65.	0.5	72
44	Analysis of the Concerted Metalation-Deprotonation Mechanism in Palladium-Catalyzed Direct Arylation Across a Broad Range of Aromatic Substrates. Journal of the American Chemical Society, 2008, 130, 10848-10849.	6.6	900
45	Low-Valent Vanadium Complexes of a Pyrrolide-Based Ligand. Electronic Structure of a Dimeric V(I) Complex with a Short and Weak Metalâ^'Metal Bond. Inorganic Chemistry, 2008, 47, 3265-3273.	1.9	21
46	Spectroscopic and Density Functional Theory Studies of the Blueâ^'Copper Site in M121SeM and C112SeC Azurin:  Cuâ^'Se Versus Cuâ^'S Bonding. Journal of the American Chemical Society, 2008, 130, 3866-3877.	6.6	46
47	Spectroscopic, Computational, and Kinetic Studies of the ν4-Sulfide-Bridged Tetranuclear CuZCluster in N2O Reductase: pH Effect on the Edge Ligand and Its Contribution to Reactivity. Journal of the American Chemical Society, 2007, 129, 3955-3965.	6.6	52
48	Synthesis, X-ray crystal structure and DFT calculations of bis(N-(2-picolyl)picolinamido)Mn(iii) hexafluorophosphate. Dalton Transactions, 2007, , 4143.	1.6	17
49	Bis(imido) W(VI) Complexes Chelated by N,N′-Disubstituted 1,8-Diamidonaphthalene: An Analysis of Bonding, Isocyanate Insertion, and Al-Me Transfer. Organometallics, 2007, 26, 6586-6590.	1.1	9
50	High-Yielding Palladium-Catalyzed Intramolecular Alkane Arylation:  Reaction Development and Mechanistic Studies. Journal of the American Chemical Society, 2007, 129, 14570-14571.	6.6	369
51	The Two-State Issue in the Mixed-Valence Binuclear CuACenter in CytochromecOxidase and N2O Reductase. Journal of the American Chemical Society, 2006, 128, 16452-16453.	6.6	47
52	Mechanism of N2O Reduction by the $\hat{l}\frac{1}{4}$ 4-S Tetranuclear CuZCluster of Nitrous Oxide Reductase. Journal of the American Chemical Society, 2006, 128, 278-290.	6.6	322
53	Reinvestigation of the method used to map the electronic structure of blue copper proteins by NMR relaxation. Journal of Biological Inorganic Chemistry, 2006, 11, 277-285.	1.1	12
54	Metal–thiolate bonds in bioinorganic chemistry. Journal of Computational Chemistry, 2006, 27, 1415-1428.	1.5	112

SERGE | GORELSKY

#	Article	IF	CITATIONS
55	Spectroscopic and DFT Investigation of [M{HB(3,5-iPr2pz)3}(SC6F5)] (M = Mn, Fe, Co, Ni, Cu, and Zn) Model Complexes:Â Periodic Trends in Metalâ^'Thiolate Bonding. Inorganic Chemistry, 2005, 44, 4947-4960.	1.9	175
56	N2O Reduction by theî½44-Sulfide-Bridged Tetranuclear CuZ Cluster Active Site. Angewandte Chemie - International Edition, 2004, 43, 4132-4140.	7.2	112
57	Activation of N2O Reduction by the Fully Reduced î¾4-Sulfide Bridged Tetranuclear CuZCluster in Nitrous Oxide Reductase. Journal of the American Chemical Society, 2003, 125, 15708-15709.	6.6	106