Xiaobin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11703305/publications.pdf

Version: 2024-02-01

34	2,865	30	34
papers	citations	h-index	g-index
35	35	35	2558
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Monovalent Cation Exchange Membranes with Janus Charged Structure for Ion Separation. Engineering, 2023, 25, 204-213.	6.7	17
2	Bio-inspired mineral-hydrogel hybrid coating on hydrophobic PVDF membrane boosting oil/water emulsion separation. Separation and Purification Technology, 2022, 285, 120383.	7.9	98
3	Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. Journal of Membrane Science, 2021, 618, 118525.	8.2	178
4	Constructing Scalable Superhydrophobic Membranes for Ultrafast Water–Oil Separation. ACS Nano, 2021, 15, 3500-3508.	14.6	175
5	Oxygen barrier property of synthesized polyacrylate coatings containing interâ€chain crossâ€linking architecture on <scp>PET</scp> film. Journal of Applied Polymer Science, 2021, 138, 50836.	2.6	3
6	Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation. Advanced Composites and Hybrid Materials, 2021, 4, 562-573.	21.1	25
7	Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor. Chemical Engineering Journal, 2021, 412, 128673.	12.7	170
8	Porous Janus materials with unique asymmetries and functionality. Materials Today, 2021, 51, 626-647.	14.2	113
9	Water treatment based on atomically engineered materials: Atomic layer deposition and beyond. Matter, 2021, 4, 3515-3548.	10.0	66
10	Polyacrylate Decorating Poly(ethylene terephthalate) (PET) Film Surface for Boosting Oxygen Barrier Property. Coatings, 2021, 11, 1451.	2.6	2
11	Universal unilateral electro-spinning/spraying strategy to construct water-unidirectional Janus membranes with well-tuned hierarchical micro/nanostructures. Chemical Communications, 2020, 56, 478-481.	4.1	68
12	Mussel-/diatom-inspired silicified membrane for high-efficiency water remediation. Journal of Membrane Science, 2020, 597, 117753.	8.2	48
13	Mussel-inspired structure evolution customizing membrane interface hydrophilization. Journal of Membrane Science, 2020, 612, 118471.	8.2	40
14	Rational design of poly(ethylene oxide) based membranes for sustainable CO ₂ capture. Journal of Materials Chemistry A, 2020, 8, 24233-24252.	10.3	94
15	Selfâ€Cleaning Membranes: Visibleâ€Lightâ€Activated Photocatalytic Films toward Selfâ€Cleaning Membranes (Adv. Funct. Mater. 34/2020). Advanced Functional Materials, 2020, 30, 2070230.	14.9	36
16	Multi-hydrophilic functional network enables porous membranes excellent anti-fouling performance for highly efficient water remediation. Journal of Membrane Science, 2020, 608, 118191.	8.2	39
17	A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chemical Engineering Science, 2020, 225, 115845.	3.8	100
18	Visibleâ€Lightâ€Activated Photocatalytic Films toward Selfâ€Cleaning Membranes. Advanced Functional Materials, 2020, 30, 2002847.	14.9	74

#	Article	IF	CITATIONS
19	Polyphenolâ€Sensitized Atomic Layer Deposition for Membrane Interface Hydrophilization. Advanced Functional Materials, 2020, 30, 1910062.	14.9	70
20	Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by <i>in situ</i> asymmetry engineering for unprecedently ultrafast oil–water emulsion separation. Journal of Materials Chemistry A, 2020, 8, 16933-16942.	10.3	73
21	Bioadhesion-inspired surface engineering constructing robust, hydrophilic membranes for highly-efficient wastewater remediation. Journal of Membrane Science, 2019, 591, 117353.	8.2	76
22	Biomimetic hydrophilization engineering on membrane surface for highly-efficient water purification. Journal of Membrane Science, 2019, 589, 117223.	8.2	90
23	Boosting visible light photocatalytic activity via impregnation-induced RhB-sensitized MIL-125(Ti). Chemical Engineering Research and Design, 2019, 143, 90-99.	5.6	49
24	Boosting the charge storage of layered double hydroxides derived from carbon nanotube-tailored metal organic frameworks. Electrochimica Acta, 2019, 301, 117-125.	5.2	57
25	Interface-confined surface engineering constructing water-unidirectional Janus membrane. Journal of Membrane Science, 2019, 576, 9-16.	8.2	91
26	Nanoporous framework "reservoir―maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture. Journal of Membrane Science, 2019, 570-571, 278-285.	8.2	55
27	Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Advanced Composites and Hybrid Materials, 2018, 1, 32-55.	21.1	92
28	Codepositing Mussel-Inspired Nanohybrids onto One-Dimensional Fibers under "Green―Conditions for Significantly Enhanced Surface/Interfacial Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 4412-4420.	6.7	66
29	Construction of oil-unidirectional membrane for integrated oil collection with lossless transportation and oil-in-water emulsion purification. Journal of Membrane Science, 2018, 549, 67-74.	8.2	107
30	Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly (ethylene glycol) blending. Journal of Membrane Science, 2018, 563, 22-30.	8.2	159
31	Biomimetic Silicification on Membrane Surface for Highly Efficient Treatments of Both Oil-in-Water Emulsion and Protein Wastewater. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29982-29991.	8.0	101
32	Building Nanoporous Metal–Organic Frameworks "Armor―on Fibers for High-Performance Composite Materials. ACS Applied Materials & Distribution (2017), 9, 5590-5599.	8.0	161
33	Bio-inspired Ni ²⁺ -polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation. Chemical Communications, 2017, 53, 6128-6131.	4.1	84
34	Simply realizing "water diode―Janus membranes for multifunctional smart applications. Materials Horizons, 2017, 4, 701-708.	12.2	186