
François-Xavier Standaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1169950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated news recommendation in front of adversarial examples and the technical limits of transparency in algorithmic accountability. Al and Society, 2022, 37, 67-80.	3.1	7
2	Efficient Profiled Side-Channel Analysis of Masked Implementations, Extended. IEEE Transactions on Information Forensics and Security, 2022, 17, 574-584.	4.5	6
3	Towards a Better Understanding of Side-Channel Analysis Measurements Setups. Lecture Notes in Computer Science, 2022, , 64-79.	1.0	1
4	Fully-Digital Randomization Based Side-Channel Security—Toward Ultra-Low Cost-per-Security. IEEE Access, 2022, 10, 68440-68449.	2.6	2
5	Automatic and Manual Detection of Generated News: Case Study, Limitations and Challenges. , 2022, , .		1
6	Tight-ES-TRNG: Improved Construction and Robustness Analysis. SN Computer Science, 2022, 3, .	2.3	0
7	Hardware Private Circuits: From Trivial Composition to Full Verification. IEEE Transactions on Computers, 2021, 70, 1677-1690.	2.4	29
8	Side-channel analysis of a learning parity with physical noise processor. Journal of Cryptographic Engineering, 2021, 11, 171-179.	1.5	1
9	Reducing risks through simplicity: high side-channel security for lazy engineers. Journal of Cryptographic Engineering, 2021, 11, 39-55.	1.5	1
10	Towards Tight Random Probing Security. Lecture Notes in Computer Science, 2021, , 185-214.	1.0	6
11	A stealthy Hardware Trojan based on a Statistical Fault Attack. Cryptography and Communications, 2021, 13, 587-600.	0.9	Ο
12	How to fool a black box machine learning based side-channel security evaluation. Cryptography and Communications, 2021, 13, 573-585.	0.9	3
13	Scatter: a Missing Case?. Lecture Notes in Computer Science, 2021, , 90-103.	1.0	0
14	On the Security of Off-the-Shelf Microcontrollers: Hardware IsÂNotÂEnough. Lecture Notes in Computer Science, 2021, , 103-118.	1.0	2
15	Post-Quantum Cryptography: Challenges and Opportunities for Robust and Secure HW Design. , 2021, , .		0
16	Efficient Leakage-Resilient MACs Without Idealized Assumptions. Lecture Notes in Computer Science, 2021, , 95-123.	1.0	2
17	Security Analysis of Deterministic Re-keying with Masking and Shuffling: Application to ISAP. Lecture Notes in Computer Science, 2021, , 168-183.	1.0	4
18	Improved parallel mask refreshing algorithms: generic solutions with parametrized non-interference and automated optimizations. Journal of Cryptographic Engineering, 2020, 10, 17-26.	1.5	7

#	Article	IF	CITATIONS
19	Deep learning mitigates but does not annihilate the need of aligned traces and a generalized ResNet model for side-channel attacks. Journal of Cryptographic Engineering, 2020, 10, 85-95.	1.5	23
20	Learning with Physical Noise or Errors. IEEE Transactions on Dependable and Secure Computing, 2020, 17, 957-971.	3.7	3
21	Fidelity Leakages: Applying Membership Inference Attacks to Preference Data. , 2020, , .		1
22	Ask Less, Get More: Side-Channel Signal Hiding, Revisited. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 4904-4917.	3.5	13
23	Trivially and Efficiently Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE Transactions on Information Forensics and Security, 2020, 15, 2542-2555.	4.5	35
24	Beyond algorithmic noise or how to shuffle parallel implementations?. International Journal of Circuit Theory and Applications, 2020, 48, 674-695.	1.3	6
25	Mode-Level vs. Implementation-Level Physical Security in Symmetric Cryptography. Lecture Notes in Computer Science, 2020, , 369-400.	1.0	16
26	Key Enumeration from the Adversarial Viewpoint. Lecture Notes in Computer Science, 2020, , 252-267.	1.0	1
27	Packed Multiplication: How to Amortize the Cost of Side-Channel Masking?. Lecture Notes in Computer Science, 2020, , 851-880.	1.0	2
28	Strong Authenticity with Leakage Under Weak and Falsifiable Physical Assumptions. Lecture Notes in Computer Science, 2020, , 517-532.	1.0	2
29	A Systematic Appraisal of Side Channel Evaluation Strategies. Lecture Notes in Computer Science, 2020, , 46-66.	1.0	11
30	On the Worst-Case Side-Channel Security of ECC Point Randomization in Embedded Devices. Lecture Notes in Computer Science, 2020, , 205-227.	1.0	1
31	Provable Order Amplification for Code-Based Masking: How to Avoid Non-Linear Leakages Due to Masked Operations. IEEE Transactions on Information Forensics and Security, 2019, 14, 3069-3082.	4.5	4
32	A security oriented transient-noise simulation methodology: Evaluation of intrinsic physical noise of cryptographic designs. The Integration VLSI Journal, 2019, 68, 71-79.	1.3	3
33	Fast Side-Channel Security Evaluation of ECC Implementations. Lecture Notes in Computer Science, 2019, , 25-42.	1.0	2
34	How (Not) to Use Welch's T-Test in Side-Channel Security Evaluations. Lecture Notes in Computer Science, 2019, , 65-79.	1.0	23
35	Making Masking Security Proofs Concrete (Or How to Evaluate the Security of Any Leaking Device), Extended Version. Journal of Cryptology, 2019, 32, 1263-1297.	2.1	29
36	Leakage Certification Revisited: Bounding Model Errors in Side-Channel Security Evaluations. Lecture Notes in Computer Science, 2019, , 713-737.	1.0	22

#	Article	IF	CITATIONS
37	maskVerif: Automated Verification of Higher-Order Masking in Presence of Physical Defaults. Lecture Notes in Computer Science, 2019, , 300-318.	1.0	35
38	Authenticated Encryption with Nonce Misuse and Physical Leakage: Definitions, Separation Results and First Construction. Lecture Notes in Computer Science, 2019, , 150-172.	1.0	9
39	Improved Filter Permutators for Efficient FHE: Better Instances and Implementations. Lecture Notes in Computer Science, 2019, , 68-91.	1.0	19
40	SpookChain: Chaining a Sponge-Based AEAD with Beyond-Birthday Security. Lecture Notes in Computer Science, 2019, , 67-85.	1.0	2
41	Reducing the Cost of Authenticity with Leakages: a \$\$mathsf {CIML2}\$\$ -Secure \$\$mathsf {AE}\$\$ Scheme with One Call to a Strongly Protected Tweakable Block Cipher. Lecture Notes in Computer Science, 2019, , 229-249.	1.0	4
42	Towards Sound and Optimal Leakage Detection Procedure. Lecture Notes in Computer Science, 2018, , 105-122.	1.0	17
43	Connecting and Improving Direct Sum Masking and Inner Product Masking. Lecture Notes in Computer Science, 2018, , 123-141.	1.0	10
44	Ridge-Based DPA: Improvement of Differential Power Analysis For Nanoscale Chips. IEEE Transactions on Information Forensics and Security, 2018, 13, 1301-1316.	4.5	25
45	TemplateÂattacksÂversusÂmachineÂlearningÂrevisited andÂtheÂcurseÂofÂdimensionalityÂinÂside-channelÂanalys extended version. Journal of Cryptographic Engineering, 2018, 8, 301-313.	sis: 1.5	32
46	Start Simple and then Refine: Bias-Variance Decomposition as a Diagnosis Tool for Leakage Profiling. IEEE Transactions on Computers, 2018, 67, 268-283.	2.4	8
47	Ciphertext Integrity with Misuse and Leakage. , 2018, , .		9
48	A Transient Noise Analysis of Secured Dual-Rail Based Logic Style. , 2018, , .		0
49	Side-channel attacks against the human brain: the PIN code case study (extended version). Brain Informatics, 2018, 5, 12.	1.8	6
50	Implementing Trojan-Resilient Hardware from (Mostly) Untrusted Components Designed by Colluding Manufacturers. , 2018, , .		5
51	Demonstrating an LPPN Processor. , 2018, , .		3
52	Masking Proofs Are Tight and How to Exploit it in Security Evaluations. Lecture Notes in Computer Science, 2018, , 385-412.	1.0	13
53	Let's make it Noisy: A Simulation Methodology for adding Intrinsic Physical Noise to Cryptographic Designs. , 2018, , .		2
54	Secure Multiplication for Bitslice Higher-Order Masking: Optimisation andÂComparison. Lecture Notes in Computer Science, 2018, , 3-22.	1.0	8

#	Article	IF	CITATIONS
55	Improving the security and efficiency of block ciphers based on LS-designs. Designs, Codes, and Cryptography, 2017, 82, 495-509.	1.0	19
56	Ridge-Based Profiled Differential Power Analysis. Lecture Notes in Computer Science, 2017, , 347-362.	1.0	6
57	Towards easy leakage certification: extended version. Journal of Cryptographic Engineering, 2017, 7, 129-147.	1.5	6
58	Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model. Lecture Notes in Computer Science, 2017, , 535-566.	1.0	57
59	Scaling Trends for Dual-Rail Logic Styles Against Side-Channel Attacks: A Case-Study. Lecture Notes in Computer Science, 2017, , 19-33.	1.0	8
60	Consolidating Inner Product Masking. Lecture Notes in Computer Science, 2017, , 724-754.	1.0	22
61	Inner Product Masking for Bitslice Ciphers and Security Order Amplification for Linear Leakages. Lecture Notes in Computer Science, 2017, , 174-191.	1.0	10
62	An Analysis of the Learning Parity with Noise Assumption Against Fault Attacks. Lecture Notes in Computer Science, 2017, , 245-264.	1.0	3
63	Side-Channel Attacks Against the Human Brain: The PIN Code Case Study. Lecture Notes in Computer Science, 2017, , 171-189.	1.0	4
64	Getting the Most Out of Leakage Detection. Lecture Notes in Computer Science, 2017, , 264-281.	1.0	2
65	Gimli : A Cross-Platform Permutation. Lecture Notes in Computer Science, 2017, , 299-320.	1.0	51
66	A Systematic Approach to the Side-Channel Analysis of ECC Implementations with Worst-Case Horizontal Attacks. Lecture Notes in Computer Science, 2017, , 534-554.	1.0	14
67	Very High Order Masking: Efficient Implementation and Security Evaluation. Lecture Notes in Computer Science, 2017, , 623-643.	1.0	28
68	Bridging the Gap: Advanced Tools for Side-Channel Leakage Estimation Beyond Gaussian Templates and Histograms. Lecture Notes in Computer Science, 2017, , 58-78.	1.0	4
69	Moments-Correlating DPA. , 2016, , .		29
70	Private Circuits III. , 2016, , .		17
71	Towards Easy Leakage Certification. Lecture Notes in Computer Science, 2016, , 40-60.	1.0	12
72	A Framework for the Analysis and Evaluation of Algebraic Fault Attacks on Lightweight Block Ciphers. IEEE Transactions on Information Forensics and Security, 2016, 11, 1039-1054.	4.5	51

#	Article	IF	CITATIONS
73	Towards Fresh and Hybrid Re-Keying Schemes with Beyond Birthday Security. Lecture Notes in Computer Science, 2016, , 225-241.	1.0	23
74	Comparing Approaches to Rank Estimation for Side-Channel Security Evaluations. Lecture Notes in Computer Science, 2016, , 125-142.	1.0	16
75	Towards Securing Low-Power Digital Circuits with Ultra-Low-Voltage Vdd Randomizers. Lecture Notes in Computer Science, 2016, , 233-248.	1.0	4
76	Towards Fair and Efficient Evaluations of Leaking Cryptographic Devices. Lecture Notes in Computer Science, 2016, , 353-362.	1.0	2
77	Score-Based vs. Probability-Based Enumeration – A Cautionary Note. Lecture Notes in Computer Science, 2016, , 137-152.	1.0	8
78	From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces. Lecture Notes in Computer Science, 2016, , 240-262.	1.0	67
79	Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts. Lecture Notes in Computer Science, 2016, , 311-343.	1.0	78
80	Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems. Lecture Notes in Computer Science, 2016, , 272-301.	1.0	16
81	Simple Key Enumeration (and Rank Estimation) Using Histograms: An Integrated Approach. Lecture Notes in Computer Science, 2016, , 61-81.	1.0	52
82	Taylor Expansion of Maximum Likelihood Attacks for Masked and Shuffled Implementations. Lecture Notes in Computer Science, 2016, , 573-601.	1.0	7
83	Unknown-Input Attacks in the Parallel Setting: Improving the Security of the CHES 2012 Leakage-Resilient PRF. Lecture Notes in Computer Science, 2016, , 602-623.	1.0	6
84	Making Masking Security Proofs Concrete. Lecture Notes in Computer Science, 2015, , 401-429.	1.0	100
85	Leakage-Resilient Authentication and Encryption from Symmetric Cryptographic Primitives. , 2015, , .		42
86	Masking and leakage-resilient primitives: One, the other(s) or both?. Cryptography and Communications, 2015, 7, 163-184.	0.9	20
87	Automatic Application of Power Analysis Countermeasures. IEEE Transactions on Computers, 2015, 64, 329-341.	2.4	31
88	LS-Designs: Bitslice Encryption for Efficient Masked Software Implementations. Lecture Notes in Computer Science, 2015, , 18-37.	1.0	81
89	Blind Source Separation from Single Measurements Using Singular Spectrum Analysis. Lecture Notes in Computer Science, 2015, , 42-59.	1.0	21

Template Attacks vs. Machine Learning Revisited (and the Curse of Dimensionality in Side-Channel) Tj ETQq000 rgBT/Overlock 10 Tf 50

Fran§ois-Xavier Standaert

#	Article	IF	CITATIONS
91	On the Cost of Lazy Engineering for Masked Software Implementations. Lecture Notes in Computer Science, 2015, , 64-81.	1.0	62
92	Efficient Selection of Time Samples for Higher-Order DPA with Projection Pursuits. Lecture Notes in Computer Science, 2015, , 34-50.	1.0	17
93	Small Tweaks Do Not Help: Differential Power Analysis of MILENAGE Implementations in 3G/4G USIM Cards. Lecture Notes in Computer Science, 2015, , 468-480.	1.0	27
94	Simpler and More Efficient Rank Estimation for Side-Channel Security Assessment. Lecture Notes in Computer Science, 2015, , 117-129.	1.0	49
95	Evaluation and Improvement of Generic-Emulating DPA Attacks. Lecture Notes in Computer Science, 2015, , 416-432.	1.0	4
96	ASCA, SASCA and DPA with Enumeration: Which One Beats the Other and When?. Lecture Notes in Computer Science, 2015, , 291-312.	1.0	17
97	Side-Channel Attacks from Static Power: When Should We Care?. , 2015, , .		34
98	Combining Leakage-Resilient PRFs and Shuffling. Lecture Notes in Computer Science, 2015, , 122-136.	1.0	4
99	On the Impacts of Mathematical Realization over Practical Security of Leakage Resilient Cryptographic Schemes. Lecture Notes in Computer Science, 2015, , 469-484.	1.0	0
100	Hardware Implementation and Side-Channel Analysis of Lapin. Lecture Notes in Computer Science, 2014, , 206-226.	1.0	12
101	FPGA Implementations of SPRING. Lecture Notes in Computer Science, 2014, , 414-432.	1.0	8
102	A Survey of Recent Results in FPGA Security and Intellectual Property Protection. , 2014, , 201-224.		4
103	A Combined Design-Time/Test-Time Study of the Vulnerability of Sub-Threshold Devices to Low Voltage Fault Attacks. IEEE Transactions on Emerging Topics in Computing, 2014, 2, 107-118.	3.2	11
104	Exploiting the Incomplete Diffusion Feature: A Specialized Analytical Side-Channel Attack Against the AES and Its Application to Microcontroller Implementations. IEEE Transactions on Information Forensics and Security, 2014, 9, 999-1014.	4.5	16
105	On a Particular Case of the Bisymmetric Equation for Quasigroups. Acta Mathematica Hungarica, 2014, 143, 330-336.	0.3	0
106	Masking vs. multiparty computation: how large is the gap for AES?. Journal of Cryptographic Engineering, 2014, 4, 47-57.	1.5	17
107	Towards fresh re-keying with leakage-resilient PRFs: cipher design principles and analysis. Journal of Cryptographic Engineering, 2014, 4, 157.	1.5	12
108	Understanding the limitations and improving the relevance of SPICE simulations in side-channel security evaluations. Journal of Cryptographic Engineering, 2014, 4, 187-195.	1.5	9

François-Xavier Standaert

#	Article	IF	CITATIONS
109	The Myth of Generic DPA…and the Magic of Learning. Lecture Notes in Computer Science, 2014, , 183-205.	1.0	43
110	Efficient Masked S-Boxes Processing – A Step Forward –. Lecture Notes in Computer Science, 2014, , 251-266.	1.0	25
111	Low Entropy Masking Schemes, Revisited. Lecture Notes in Computer Science, 2014, , 33-43.	1.0	20
112	Low Entropy Masking Schemes, Revisited. Lecture Notes in Computer Science, 2014, , 33-43.	1.0	6
113	How to Certify the Leakage of a Chip?. Lecture Notes in Computer Science, 2014, , 459-476.	1.0	57
114	Soft Analytical Side-Channel Attacks. Lecture Notes in Computer Science, 2014, , 282-296.	1.0	58
115	Support Vector Machines for Improved IP Detection with Soft Physical Hash Functions. Lecture Notes in Computer Science, 2014, , 112-128.	1.0	1
116	From New Technologies to New Solutions. Lecture Notes in Computer Science, 2014, , 16-29.	1.0	0
117	Unified and optimized linear collision attacks and their application in a non-profiled setting: extended version. Journal of Cryptographic Engineering, 2013, 3, 45-58.	1.5	13
118	Block Ciphers That Are Easier to Mask: How Far Can We Go?. Lecture Notes in Computer Science, 2013, , 383-399.	1.0	91
119	Masking vs. Multiparty Computation: How Large Is the Gap for AES?. Lecture Notes in Computer Science, 2013, , 400-416.	1.0	19
120	Intellectual property protection for FPGA designs with soft physical hash functions: First experimental results. , 2013, , .		14
121	An Optimal Key Enumeration Algorithm and Its Application to Side-Channel Attacks. Lecture Notes in Computer Science, 2013, , 390-406.	1.0	80
122	Practical Leakage-Resilient Pseudorandom Objects with Minimum Public Randomness. Lecture Notes in Computer Science, 2013, , 223-238.	1.0	21
123	Compact Implementation and Performance Evaluation of Hash Functions in ATtiny Devices. Lecture Notes in Computer Science, 2013, , 158-172.	1.0	24
124	Efficient Removal of Random Delays from Embedded Software Implementations Using Hidden Markov Models. Lecture Notes in Computer Science, 2013, , 123-140.	1.0	27
125	Systematic Construction and Comprehensive Evaluation of Kolmogorov-Smirnov Test Based Side-Channel Distinguishers. Lecture Notes in Computer Science, 2013, , 336-352.	1.0	9
126	Security Evaluations beyond Computing Power. Lecture Notes in Computer Science, 2013, , 126-141.	1.0	66

#	Article	IF	CITATIONS
127	On the Need of Physical Security for Small Embedded Devices: A Case Study with COMP128-1 Implementations in SIM Cards. Lecture Notes in Computer Science, 2013, , 230-238.	1.0	16
128	Leakage-Resilient Symmetric Cryptography under Empirically Verifiable Assumptions. Lecture Notes in Computer Science, 2013, , 335-352.	1.0	38
129	Exploring the Feasibility of Low Cost Fault Injection Attacks on Sub-threshold Devices through an Example of a 65nm AES Implementation. Lecture Notes in Computer Science, 2012, , 48-60.	1.0	14
130	Analysis and experimental evaluation of image-based PUFs. Journal of Cryptographic Engineering, 2012, 2, 189-206.	1.5	14
131	Analysis of Dynamic Differential Swing Limited Logic for Low-Power Secure Applications. Journal of Low Power Electronics and Applications, 2012, 2, 98-126.	1.3	4
132	Masking with Randomized Look Up Tables. Lecture Notes in Computer Science, 2012, , 283-299.	1.0	7
133	Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations. Lecture Notes in Computer Science, 2012, , 45-62.	1.0	90
134	Compact Implementation and Performance Evaluation of Block Ciphers in ATtiny Devices. Lecture Notes in Computer Science, 2012, , 172-187.	1.0	78
135	Security Analysis of Image-Based PUFs for Anti-counterfeiting. Lecture Notes in Computer Science, 2012, , 26-38.	1.0	4
136	Unified and Optimized Linear Collision Attacks and Their Application in a Non-profiled Setting. Lecture Notes in Computer Science, 2012, , 175-192.	1.0	20
137	Towards Super-Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs. Lecture Notes in Computer Science, 2012, , 193-212.	1.0	27
138	Towards Green Cryptography: A Comparison of Lightweight Ciphers from the Energy Viewpoint. Lecture Notes in Computer Science, 2012, , 390-407.	1.0	57
139	Algebraic Side-Channel Attacks Beyond the Hamming Weight Leakage Model. Lecture Notes in Computer Science, 2012, , 140-154.	1.0	29
140	Shuffling against Side-Channel Attacks: A Comprehensive Study with Cautionary Note. Lecture Notes in Computer Science, 2012, , 740-757.	1.0	110
141	Intellectual Property Protection for Integrated Systems Using Soft Physical Hash Functions. Lecture Notes in Computer Science, 2012, , 208-225.	1.0	8
142	Compact FPGA Implementations of the Five SHA-3 Finalists. Lecture Notes in Computer Science, 2011, , 217-233.	1.0	40
143	Generic Side-Channel Distinguishers: Improvements and Limitations. Lecture Notes in Computer Science, 2011, , 354-372.	1.0	32

A Formalization of the Security Features of Physical Functions. , 2011, , .

#	Article	IF	CITATIONS
145	Leftover Hash Lemma, Revisited. Lecture Notes in Computer Science, 2011, , 1-20.	1.0	61
146	Mutual Information Analysis: aÂComprehensive Study. Journal of Cryptology, 2011, 24, 269-291.	2.1	203
147	Harvesting the potential of nano-CMOS for lightweight cryptography: an ultra-low-voltage 65Ânm AES coprocessor for passive RFID tags. Journal of Cryptographic Engineering, 2011, 1, 79-86.	1.5	29
148	Univariate side channel attacks and leakage modeling. Journal of Cryptographic Engineering, 2011, 1, 123-144.	1.5	146
149	Extractors against side-channel attacks: weak or strong?. Journal of Cryptographic Engineering, 2011, 1, 231-241.	1.5	9
150	A first step towards automatic application of power analysis countermeasures. , 2011, , .		70
151	A Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices. Lecture Notes in Computer Science, 2011, , 109-128.	1.0	101
152	Information Theoretic and Security Analysis of a 65-Nanometer DDSLL AES S-Box. Lecture Notes in Computer Science, 2011, , 223-239.	1.0	25
153	Fresh Re-keying II: Securing Multiple Parties against Side-Channel and Fault Attacks. Lecture Notes in Computer Science, 2011, , 115-132.	1.0	23
154	Physical Security. , 2011, , 928-929.		0
155	Extractors against Side-Channel Attacks: Weak or Strong?. Lecture Notes in Computer Science, 2011, , 256-272.	1.0	4
156	Time-Memory Trade-offs. , 2011, , 1297-1299.		0
157	How to strongly link data and its medium: the paper case. IET Information Security, 2010, 4, 125.	1.1	29
158	Introduction to Side-Channel Attacks. Integrated Circuits and Systems, 2010, , 27-42.	0.2	127
159	Randomly driven fuzzy key extraction of unclonable images. , 2010, , .		6
160	Algebraic Side-Channel Attacks. Lecture Notes in Computer Science, 2010, , 393-410.	1.0	68
161	Clitch-induced within-die variations of dynamic energy in voltage-scaled nano-CMOS circuits. , 2010, , .		6
162	Fresh Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost Devices. Lecture Notes in Computer Science, 2010, , 279-296.	1.0	79

#	Article	IF	CITATIONS
163	Adaptive Chosen-Message Side-Channel Attacks. Lecture Notes in Computer Science, 2010, , 186-199.	1.0	19
164	Multi-trail Statistical Saturation Attacks. Lecture Notes in Computer Science, 2010, , 123-138.	1.0	5
165	Leakage Resilient Cryptography in Practice. Information Security and Cryptography, 2010, , 99-134.	0.2	65
166	Stealthy Compromise of Wireless Sensor Nodes with Power Analysis Attacks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , 229-242.	0.2	24
167	The World Is Not Enough: Another Look on Second-Order DPA. Lecture Notes in Computer Science, 2010, , 112-129.	1.0	128
168	Scaling trends of the AES S-box low power consumption in 130 and 65 nm CMOS technology nodes. , 2009, , .		15
169	The Swiss-Knife RFID Distance Bounding Protocol. Lecture Notes in Computer Science, 2009, , 98-115.	1.0	87
170	Provable security of block ciphers against linear cryptanalysis: a mission impossible?. Designs, Codes, and Cryptography, 2009, 50, 325-338.	1.0	1
171	Secure and Efficient Implementation of Symmetric Encryption Schemes using FPGAs. , 2009, , 295-320.		2
172	Partition vs. Comparison Side-Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univariate Side-Channel Attacks against Two Unprotected CMOS Devices. Lecture Notes in Computer Science, 2009, , 253-267.	1.0	64
173	A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. Lecture Notes in Computer Science, 2009, , 443-461.	1.0	515
174	How to Compare Profiled Side-Channel Attacks?. Lecture Notes in Computer Science, 2009, , 485-498.	1.0	44
175	A Design Flow and Evaluation Framework for DPA-Resistant Instruction Set Extensions. Lecture Notes in Computer Science, 2009, , 205-219.	1.0	41
176	Mutual Information Analysis: How, When and Why?. Lecture Notes in Computer Science, 2009, , 429-443.	1.0	81
177	Algebraic Side-Channel Attacks on the AES: Why Time also Matters in DPA. Lecture Notes in Computer Science, 2009, , 97-111.	1.0	73
178	Implementation of the AES-128 on Virtex-5 FPGAs. , 2008, , 16-26.		65
179	On the Energy Cost of Communication and Cryptography in Wireless Sensor Networks. , 2008, , .		205
180	FPGA Implementation(s) of a Scalable Encryption Algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008, 16, 212-216.	2.1	37

#	Article	IF	CITATIONS
181	A block cipher based pseudo random number generator secure against side-channel key recovery. , 2008, , .		43
182	Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent. Lecture Notes in Computer Science, 2008, , 382-397.	1.0	17
183	Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages. Lecture Notes in Computer Science, 2008, , 411-425.	1.0	128
184	Power and electromagnetic analysis: Improved model, consequences and comparisons. The Integration VLSI Journal, 2007, 40, 52-60.	1.3	139
185	Information Theoretic Evaluation of Side-Channel Resistant Logic Styles. Lecture Notes in Computer Science, 2007, , 427-442.	1.0	43
186	SEA: A Scalable Encryption Algorithm for Small Embedded Applications. Lecture Notes in Computer Science, 2006, , 222-236.	1.0	131
187	A Comparative Cost/Security Analysis of Fault Attack Countermeasures. Lecture Notes in Computer Science, 2006, , 159-172.	1.0	72
188	Improved Higher-Order Side-Channel Attacks with FPGA Experiments. Lecture Notes in Computer Science, 2005, , 309-323.	1.0	55
189	A Tutorial on Physical Security and Side-Channel Attacks. Lecture Notes in Computer Science, 2005, , 78-108.	1.0	40
190	A Design Methodology for Secured ICs Using Dynamic Current Mode Logic. Lecture Notes in Computer Science, 2005, , 550-560.	1.0	13
191	Time-memory tradeoffs. , 2005, , 614-616.		1
192	Power Analysis of an FPGA. Lecture Notes in Computer Science, 2004, , 30-44.	1.0	41
193	ICEBERG : An Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware. Lecture Notes in Computer Science, 2004, , 279-298.	1.0	67
194	Power Analysis Attacks Against FPGA Implementations of the DES. Lecture Notes in Computer Science, 2004, , 84-94.	1.0	33
195	On The Security of the DeKaRT Primitive. International Federation for Information Processing, 2004, , 241-254.	0.4	0
196	Power Analysis of FPGAs: How Practical Is the Attack?. Lecture Notes in Computer Science, 2003, , 701-710.	1.0	35
197	Efficient uses of FPGAs for implementations of DES and its experimental linear cryptanalysis. IEEE Transactions on Computers, 2003, 52, 473-482.	2.4	25
198	Design strategies and modified descriptions to optimize cipher FPGA implementations. , 2003, , .		7

Design strategies and modified descriptions to optimize cipher FPGA implementations. , 2003, , . 198

12

#	Article	IF	CITATIONS
199	A methodology to implement block ciphers in reconfigurable hardware and its application to fast and compact AES RIJNDAEL. , 2003, , .		30
200	Design Strategies and Modified Descriptions to Optimize Cipher FPGA Implementations: Fast and Compact Results for DES and Triple-DES. Lecture Notes in Computer Science, 2003, , 181-193.	1.0	15
201	Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs. Lecture Notes in Computer Science, 2003, , 334-350.	1.0	100
202	MOE: Multiplication Operated Encryption with Trojan Resilience. IACR Transactions on Symmetric Cryptology, 0, , 78-129.	0.0	1
203	Breaking Masked Implementations with Many Shares on 32-bit Software Platforms. lacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 202-234.	0.0	11
204	Leakage Detection with the x2-Test. lacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 209-237.	0.0	37
205	Composable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model. Iacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 89-120.	0.0	48
206	Towards Globally Optimized Masking: From Low Randomness to Low Noise Rate. lacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 162-198.	0.0	7
207	Clitch-Resistant Masking Revisited. lacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 256-292.	0.0	27
208	Reducing a Masked Implementation's Effective Security Order with Setup Manipulations. Iacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 293-317.	0.0	16
209	Multi-Tuple Leakage Detection and the Dependent Signal Issue. lacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 318-345.	0.0	9
210	On Leakage-Resilient Authenticated Encryption with Decryption Leakages. IACR Transactions on Symmetric Cryptology, 0, , 271-293.	0.0	25
211	Towards Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex Sponge Construction. IACR Transactions on Symmetric Cryptology, 0, , 6-42.	0.0	10
212	Spook: Sponge-Based Leakage-Resistant Authenticated Encryption with a Masked Tweakable Block Cipher. IACR Transactions on Symmetric Cryptology, 0, , 295-349.	0.0	19
213	TEDT, a Leakage-Resist AEAD Mode for High Physical Security Applications. lacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 256-320.	0.0	9
214	Side-Channel Countermeasures' Dissection and the Limits of Closed Source Security Evaluations. Iacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 1-25.	0.0	4