Colin Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11698769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recognition of discrete export signals in early flagellar subunits during bacterial type III secretion. ELife, 2022, 11, .	6.0	8
2	Structure of a bacterial toxin-activating acyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3058-66.	7.1	33
3	Building a flagellum in biological outer space. Microbial Cell, 2014, 1, 64-66.	3.2	14
4	Building a flagellum outside the bacterial cell. Trends in Microbiology, 2014, 22, 566-572.	7.7	80
5	Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump. FEBS Letters, 2014, 588, 3147-3153.	2.8	40
6	Structure and Operation of Bacterial Tripartite Pumps. Annual Review of Microbiology, 2013, 67, 221-242.	7.3	100
7	Structure of an atypical periplasmic adaptor from a multidrug efflux pump of the spirochete <i>Borrelia burgdorferi</i> . FEBS Letters, 2013, 587, 2984-2988.	2.8	21
8	A chain mechanism for flagellum growth. Nature, 2013, 504, 287-290.	27.8	80
9	Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2112-2117.	7.1	72
10	The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7173-7178.	7.1	276
11	Selective binding of virulence type III export chaperones by FliJ escort orthologues InvI and YscO. FEMS Microbiology Letters, 2009, 293, 292-297.	1.8	29
12	A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4612-4617.	7.1	125
13	Sorting of Early and Late Flagellar Subunits After Docking at the Membrane ATPase of the Type III Export Pathway. Journal of Molecular Biology, 2007, 374, 877-882.	4.2	29
14	Salmonella typhimurium flhE, a conserved flagellar regulon gene required for swarming. Microbiology (United Kingdom), 2007, 153, 541-547.	1.8	33
15	Directed evolution of a bacterial efflux pump: Adaptation of theE. coliTolC exit duct to thePseudomonasMexAB translocase. FEBS Letters, 2006, 580, 5339-5343.	2.8	56
16	Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis. Molecular Microbiology, 2006, 15, 761-769.	2.5	72
17	An escort mechanism for cycling of export chaperones during flagellum assembly. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17474-17479.	7.1	93
18	Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2. Microbiology (United Kingdom), 2005, 151, 1779-1788.	1.8	60

#	Article	IF	CITATIONS
19	Structure of the periplasmic component of a bacterial drug efflux pump. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9994-9999.	7.1	243
20	Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3945-3950.	7.1	128
21	Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Molecular Microbiology, 2004, 53, 697-706.	2.5	184
22	Three's company: component structures bring a closer view of tripartite drug efflux pumps. Current Opinion in Structural Biology, 2004, 14, 741-747.	5.7	132
23	Structure and Function of TolC: The Bacterial Exit Duct for Proteins and Drugs. Annual Review of Biochemistry, 2004, 73, 467-489.	11.1	318
24	Structure of the Ligand-blocked Periplasmic Entrance of the Bacterial Multidrug Efflux Protein TolC. Journal of Molecular Biology, 2004, 342, 697-702.	4.2	53
25	The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation. FEMS Microbiology Letters, 2003, 219, 219-224.	1.8	56
26	Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Molecular Microbiology, 2003, 48, 1349-1355.	2.5	100
27	Locking TolC Entrance Helices to Prevent Protein Translocation by the Bacterial Type I Export Apparatus. Journal of Molecular Biology, 2003, 327, 309-315.	4.2	57
28	Transition to the open state of the TolC periplasmic tunnel entrance. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11103-11108.	7.1	145
29	Hemolysin. , 2002, , 361-378.		3
30	Intrinsic Membrane Targeting of the Flagellar Export ATPase Flil: Interaction with Acidic Phospholipids and FliH. Journal of Molecular Biology, 2002, 318, 941-950.	4.2	62
31	Interaction of the Atypical Prokaryotic Transcription Activator FlhD2C2 with Early Promoters of the Flagellar Gene Hierarchy. Journal of Molecular Biology, 2002, 321, 185-199.	4.2	57
32	An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Molecular Microbiology, 2002, 44, 1131-1139.	2.5	83
33	Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon a aThe GenBank accession number for the sequence determined in this work is AJ250100 Microbiology (United) Tj ETQq1 1 0.7	'84 3.1 84 rgl	3T / Gv erlock
34	Flagellin polymerisation control by a cytosolic export chaperone1 1Edited by I. B. Holland. Journal of Molecular Biology, 2001, 308, 221-229.	4.2	159
35	Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli. Journal of Molecular Biology, 2001, 313, 501-510.	4.2	116
36	Interaction ofEscherichia colihemolysin with biological membranes. FEBS Journal, 2001, 268, 800-808.	0.2	54

#	Article	IF	CITATIONS
37	Substrate complexes and domain organization of the <i>Salmonella</i> flagellar export chaperones FlgN and FliT. Molecular Microbiology, 2001, 39, 781-791.	2.5	106
38	Protein export and drug efflux through bacterial channel-tunnels. Current Opinion in Cell Biology, 2001, 13, 412-416.	5.4	56
39	Channel-tunnels. Current Opinion in Structural Biology, 2001, 11, 403-407.	5.7	33
40	Membrane Interaction of Escherichia coli Hemolysin: Flotation and Insertion-Dependent Labeling by Phospholipid Vesicles. Journal of Bacteriology, 2001, 183, 5364-5370.	2.2	50
41	Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature, 2000, 405, 914-919.	27.8	1,013
42	Chunnel vision. EMBO Reports, 2000, 1, 313-318.	4.5	82
43	Rapid Turnover of FlhD and FlhC, the Flagellar Regulon Transcriptional Activator Proteins, duringProteus Swarming. Journal of Bacteriology, 2000, 182, 833-836.	2.2	75
44	Functions of the subunits in the FlhD 2 C 2 transcriptional master regulator of bacterial flagellum biogenesis and swarming 1 1Edited by I. B. Holland. Journal of Molecular Biology, 2000, 303, 467-478.	4.2	69
45	From flagellum assembly to virulence: the extended family of type III export chaperones. Trends in Microbiology, 2000, 8, 202-204.	7.7	107
46	The Structure of the Colony Migration Factor from PathogenicProteus mirabilis. Journal of Biological Chemistry, 1999, 274, 22993-22998.	3.4	35
47	Substrateâ€specific binding of hookâ€associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Molecular Microbiology, 1999, 32, 569-580.	2.5	175
48	An ordered reaction mechanism for bacterial toxin acylation by the specialized acyltransferase HlyC: formation of a ternary complex with acylACP and protoxin substrates. Molecular Microbiology, 1999, 34, 887-901.	2.5	19
49	Swarming motility. Current Opinion in Microbiology, 1999, 2, 630-635.	5.1	272
50	A Novel Membrane Protein Influencing Cell Shape and Multicellular Swarming of <i>Proteus mirabilis</i> . Journal of Bacteriology, 1999, 181, 2008-2016.	2.2	59
51	Novel genes that upregulate theProteus mirabilis flhDCmaster operon controlling flagellar biogenesis and swarming. Molecular Microbiology, 1998, 29, 741-751.	2.5	104
52	A swarming-defective mutant of Proteus mirabilis lacking a putative cation-transporting membrane P-type ATPase. Microbiology (United Kingdom), 1998, 144, 1957-1961.	1.8	26
53	Acylation of <i>Escherichia coli</i> Hemolysin: A Unique Protein Lipidation Mechanism Underlying Toxin Function. Microbiology and Molecular Biology Reviews, 1998, 62, 309-333.	6.6	172
54	A motile but nonâ€swarming mutant of Proteus mirabilis lacks FlgN, a facilitator of flagella filament assembly. Molecular Microbiology, 1997, 25, 597-604.	2.5	41

#	Article	IF	CITATIONS
55	RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Molecular Microbiology, 1997, 26, 845-851.	2.5	195
56	Suppression of transcription polarity in the Escherichia coli haemolysin operon by a short upstream element shared by polysaccharide and DNA transfer determinants. Molecular Microbiology, 1996, 19, 705-713.	2.5	68
57	Increased distal gene transcription by the elongation factor RfaH, a specialized homologue of NusC. Molecular Microbiology, 1996, 22, 729-737.	2.5	63
58	Independent interaction of the acyltransferase HlyC with two maturation domains of the Escherichia coli toxin HlyA. Molecular Microbiology, 1996, 20, 813-822.	2.5	33
59	A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Molecular Microbiology, 1995, 17, 1167-1175.	2.5	125
60	Protein exporter function and in vitro ATPase activity are correlated in ABC-domain mutants of HlyB. Molecular Microbiology, 1995, 16, 87-96.	2.5	84
61	The Role of Swarm Cell Differentiation and Multicellular Migration in the Uropathogenicity of Proteus mirabilis. Journal of Infectious Diseases, 1994, 169, 1155-1158.	4.0	140
62	Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii. FEBS Journal, 1994, 220, 339-347.	0.2	49
63	Chapter 20 Secretion of hemolysin and other proteins out of the Gram-negative bacterial cell. New Comprehensive Biochemistry, 1994, 27, 425-446.	0.1	2
64	Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Molecular Microbiology, 1993, 8, 53-60.	2.5	119
65	ATPase activity and ATP/ADP-induced conformational change in the soluble domain of the bacterial protein translocator HlyB. Molecular Microbiology, 1993, 8, 1163-1175.	2.5	100
66	Bacterial signal peptide-independent protein export: HlyB-directed secretion of hemolysin. Seminars in Cell Biology, 1993, 4, 7-15.	3.4	46
67	ATPase activity and ATP/ADP-induced conformational change in the bacterial toxin exporter hemolysin B. Biochemical Society Transactions, 1993, 21, 347S-347S.	3.4	1
68	Activation ofEscherichia coliprohemolysin to the membrane-targetted toxin by HlyC-directed ACP-dependent fatty acylation. FEMS Microbiology Letters, 1992, 105, 37-43.	1.8	24
69	The HlyB/HlyD-dependent secretion of toxins by Gran-negative bacteria. FEMS Microbiology Letters, 1992, 105, 44-53.	1.8	7
70	Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Molecular Microbiology, 1992, 6, 1583-1591.	2.5	200
71	Escherichia coli HIyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes. Molecular Microbiology, 1992, 6, 1003-1012.	2.5	93
72	E.coli hemolysin interactions with prokaryotic and eukaryotic cell membranes. BioEssays, 1992, 14, 519-525.	2.5	44

#	Article	IF	CITATIONS
73	Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature, 1991, 351, 759-761.	27.8	346
74	Loss of secreted hemolysin activity in the mutant strain Hsb. 1 is due to a lesion in a plasmid copy number locus. FEMS Microbiology Letters, 1991, 83, 55-58.	1.8	1
75	Identification of the promotors directing in vivo expression of hemolysin genes in Proteus vulgaris and Escherichia coli. Molecular Genetics and Genomics, 1988, 213, 99-104.	2.4	45
76	Comparison of the haemolysin secretion protein HlyB from Proteus vulgaris and Escherichia coli; site-directed mutagenesis causing impairment of export function. Molecular Genetics and Genomics, 1988, 213, 551-555.	2.4	52
77	Expression of theE.colihemolysin secretion genehlyB involves transcript anti-termination within thehlyoperon. Nucleic Acids Research, 1988, 16, 4789-4800.	14.5	65
78	Chromosomal deletions and rearrangements cause coordinate loss of haemolysis, fimbriation and serum resistance in a uropathogenic strain of Escherichia coli. Microbial Pathogenesis, 1987, 2, 227-230.	2.9	14
79	Expression and regulation of the plasmid-encoded hemolysin determinant of Escherichia coli. Molecular Genetics and Genomics, 1984, 197, 196-203.	2.4	28
80	Hemolytic escherichia coli strains in the human fecal flora as potential urinary pathogens. Zentralblatt Fur Bakteriologie, Mikrobiologie Und Hygiene 1 Abt Originale A, Medizinische Mikrobiologie, Infektionskrankheiten Und Parasitologie, 1983, 254, 370-378.	0.2	14
81	Hemolysin Production as a Virulence Marker in Symptomatic and Asymptomatic Urinary Tract Infections Caused by <i>Escherichia coli</i> . Infection and Immunity, 1983, 39, 546-551.	2.2	131
82	Two major groups of colicin factors: Their molecular weights. Molecular Genetics and Genomics, 1978, 159, 219-221.	2.4	19
83	Plasmid Carriage and the Serum Sensitivity of Enterobacteria. Infection and Immunity, 1978, 22, 10-17.	2.2	46
84	Rapid screening for plasmid DNA. Molecular Genetics and Genomics, 1977, 151, 175-179.	2.4	26
85	Nalidixic acid as a selective agent for the isolation of enterobacteria from river water. The Journal of Hygiene, 1976, 77, 23-30.	0.9	3
86	The Type I Export Mechanism. , 0, , 71-79.		2
87	Swarming Migration by Proteus and Related Bacteria. , 0, , 379-401.		9