
Malay Pramanik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11698191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron phosphide anchored nanoporous carbon as an efficient electrode for supercapacitors and the oxygen reduction reaction. RSC Advances, 2019, 9, 25240-25247.	3.6	16
2	Hard-templated preparation of mesoporous cobalt phosphide as an oxygen evolution electrocatalyst. Electrochemistry Communications, 2019, 104, 106476.	4.7	17
3	Phosphorus-Based Mesoporous Materials for Energy Storage and Conversion. Joule, 2018, 2, 2289-2306.	24.0	65
4	Mesoporous Manganese Phosphonate Nanorods as a Prospective Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19739-19745.	8.0	38
5	Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application. Nano Energy, 2018, 52, 336-344.	16.0	65
6	Highly Ordered Mesostructured Vanadium Phosphonate toward Electrode Materials for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2017, 23, 4344-4352.	3.3	30
7	A mesoporous tin phosphate–graphene oxide hybrid toward the oxygen reduction reaction. Chemical Communications, 2017, 53, 5721-5724.	4.1	20
8	Facile synthesis of nanoporous Li _{1+x} V _{1â^'x} O ₂ @C composites as promising anode materials for lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 9156-9163.	2.8	2
9	Synthesis of mesostructured manganese phosphonate and its promising energy storage application. Journal of Materials Chemistry A, 2017, 5, 23259-23266.	10.3	24
10	Mesoporous Semimetallic Conductors: Structural and Electronic Properties of Cobalt Phosphide Systems. Angewandte Chemie - International Edition, 2017, 56, 13508-13512.	13.8	36
11	Mesoporous Semimetallic Conductors: Structural and Electronic Properties of Cobalt Phosphide Systems. Angewandte Chemie, 2017, 129, 13693-13697.	2.0	16
12	Ordered Mesoporous Cobalt Phosphate with Crystallized Walls toward Highly Active Water Oxidation Electrocatalysts. Small, 2016, 12, 1709-1715.	10.0	153
13	Controlled Synthesis of Highly Crystallized Mesoporous Mn ₂ O ₃ and Mn ₃ O ₄ by Using Anionic Surfactants. Chemistry - an Asian Journal, 2016, 11, 667-673.	3.3	11
14	Phosphonate-Derived Nanoporous Metal Phosphates and Their Superior Energy Storage Application. ACS Applied Materials & Interfaces, 2016, 8, 9790-9797.	8.0	71
15	Nanoporous Mn-based electrocatalysts through thermal conversion of cyano-bridged coordination polymers toward ultra-high efficiency hydrogen peroxide production. Journal of Materials Chemistry A, 2016, 4, 9266-9274.	10.3	51
16	Co-templating Synthesis of Bimodal Mesoporous Silica for Potential Drug Carrier. ChemistrySelect, 2016, 1, 1339-1346.	1.5	9
17	Mesoporous TiO ₂ Thin Film Formed From a Bioinspired Supramolecular Assembly. ChemistrySelect, 2016, 1, 4295-4299.	1.5	3
18	Unique nanocrystalline frameworks in mesoporous tin phosphate prepared through a hydrofluoric acid assisted chemical reaction. Journal of Materials Chemistry A, 2016, 4, 18091-18099.	10.3	14

#	Article	IF	CITATIONS
19	Direct Assembly of Mesoporous Silica Functionalized with Polypeptides for Efficient Dye Adsorption. Chemistry - A European Journal, 2016, 22, 1159-1164.	3.3	19
20	Synthesis of Mesoporous Transition-Metal Phosphates by Polymeric Micelle Assembly. Chemistry - A European Journal, 2016, 22, 7463-7467.	3.3	17
21	Surfactant-assisted synthesis of nanoporous nickel sulfide flakes and their hybridization with reduced graphene oxides for supercapacitor applications. RSC Advances, 2016, 6, 21246-21253.	3.6	45
22	Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2015, 21, 3509-3509.	3.3	2
23	Synthesis and Characterization of αâ€ÂNiMoO ₄ Nanorods for Supercapacitor ÂApplication. European Journal of Inorganic Chemistry, 2015, 2015, 3694-3699.	2.0	103
24	Cover Picture: Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal‑'Cyanide Hybrid Coordination Polymers (Chem. Eur. J.) Tj ETQq0 0 0) rg B1 3/Ove	rlo o k 10 Tf 5(
25	Mesoporous Iron Phosphonate Electrodes with Crystalline Frameworks for Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 1082-1089.	6.7	138
26	Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2015, 21, 3605-3612.	3.3	64
27	Shape-controlled synthesis of mesoporous iron phosphate materials with crystallized frameworks. Chemical Communications, 2015, 51, 13806-13809.	4.1	20
28	Multiple hydrogen bonding mediates the formation of multicompartment micelles and hierarchical self-assembled structures from pseudo A-block-(B-graft-C) terpolymers. Polymer Chemistry, 2015, 6, 5110-5124.	3.9	21
29	Template-free synthesis of nanoporous gadolinium phosphonate as a magnetic resonance imaging (MRI) agent. RSC Advances, 2015, 5, 42762-42767.	3.6	7
30	Synthesis of Hierarchical Mesoporous Mn–MFI Zeolite Nanoparticles: A Unique Architecture of Heterogeneous Catalyst for the Aerobic Oxidation of Thiols to Disulfides. ChemCatChem, 2014, 6, 220-229.	3.7	56
31	Phosphonic Acid Functionalized Ordered Mesoporous Material: A New and Ecofriendly Catalyst for One-Pot Multicomponent Biginelli Reaction under Solvent-Free Conditions. ACS Applied Materials & Interfaces, 2014, 6, 933-941.	8.0	62
32	Niobium doped hexagonal mesoporous silica (HMS-X) catalyst for vapor phase Beckmann rearrangement reaction. RSC Advances, 2014, 4, 845-854.	3.6	28
33	Selfâ€Assembled Hybrid Molybdenum Phosphonate Porous Nanomaterials and Their Catalytic Activity for the Synthesis of Benzimidazoles. ChemCatChem, 2014, 6, 2577-2586.	3.7	22
34	Covalently anchored carboxylic acid on uniform spherical silica nanoparticles with narrow slit like mesopores for the synthesis of pyrroloacridinones: Cul-catalyzed further C(sp3)–H oxyfunctionalization for Cĩ€O formation. RSC Advances, 2014, 4, 15441.	3.6	16
35	A triazine functionalized porous organic polymer: excellent CO ₂ storage material and support for designing Pd nanocatalyst for C–C cross-coupling reactions. Journal of Materials Chemistry A, 2014, 2, 11642.	10.3	138
36	Highly selective and direct oxidation of cyclohexane to cyclohexanone over vanadium exchanged NaY at room temperature under solvent-free conditions. Journal of Molecular Catalysis A, 2014, 392, 299-307.	4.8	44

MALAY PRAMANIK

#	Article	IF	CITATIONS
37	Anthracene-bisphosphonate based novel fluorescent organic nanoparticles explored as apoptosis inducers of cancer cells. Chemical Communications, 2013, 49, 9461.	4.1	27
38	Self-assembled hybrid tinphosphonate nanoparticles with bimodal porosity: an insight towards the efficient and selective catalytic process for the synthesis of bioactive 1,4-dihydropyridines under solvent-free conditions. Journal of Materials Chemistry A, 2013, 1, 11210.	10.3	37
39	Self-assembled titanium phosphonate nanomaterial having a mesoscopic void space and its optoelectronic application. Dalton Transactions, 2013, 42, 5140.	3.3	35
40	Organic–Inorganic Hybrid Supermicroporous Iron(III) Phosphonate Nanoparticles as an Efficient Catalyst for the Synthesis of Biofuels. Chemistry - A European Journal, 2013, 19, 8507-8514.	3.3	42
41	Organic–inorganic hybrid tinphosphonate material with mesoscopic void spaces: an excellent catalyst for the radical polymerization of styrene. Catalysis Science and Technology, 2012, 2, 613.	4.1	35
42	Hybrid porous tin(iv) phosphonate: an efficient catalyst for adipic acid synthesis and a very good adsorbent for CO2 uptake. Chemical Communications, 2012, 48, 6738.	4.1	48
43	Organic–inorganic hybrid porous sulfonated zinc phosphonate material: efficient catalyst for biodiesel synthesis at room temperature. Green Chemistry, 2012, 14, 2273	9.0	51