Radmila Terentyeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11698122/publications.pdf

Version: 2024-02-01

279798 377865 36 2,598 23 34 citations g-index h-index papers 36 36 36 2633 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondrial calpain inhibition restores defective SR-mitochondrial crosstalk in CPVT rat myocytes. Journal of General Physiology, 2022, 154, .	1.9	O
2	Ero $1\hat{1}$ ±-Dependent ERp44 Dissociation From RyR2 Contributes to Cardiac Arrhythmia. Circulation Research, 2022, 130, 711-724.	4.5	16
3	Interleukin- $\hat{\Pi}^2$, Oxidative Stress, and Abnormal Calcium Handling Mediate Diabetic Arrhythmic Risk. JACC Basic To Translational Science, 2021, 6, 42-52.	4.1	25
4	Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1â€mediated calcium entry in heart failure. Journal of Cellular and Molecular Medicine, 2021, 25, 4637-4648.	3.6	3
5	Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. Journal of Molecular and Cellular Cardiology, 2021, 156, 105-113.	1.9	16
6	MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca ²⁺ release in hypertrophic rat cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H615-H632.	3.2	16
7	PKA phosphorylation underlies functional recruitment of sarcolemmal SK2 channels in ventricular myocytes from hypertrophic hearts. Journal of Physiology, 2020, 598, 2847-2873.	2.9	23
8	Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Research in Cardiology, 2020, 115, 38.	5.9	73
9	Impact of ISK Voltage and Ca2+/Mg2+-Dependent Rectification on Cardiac Repolarization. Biophysical Journal, 2020, 119, 690-704.	0.5	5
10	Pharmacological Modulation of Mitochondrial Ca2+ Content Regulates Sarcoplasmic Reticulum Ca2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species. Frontiers in Physiology, 2018, 9, 1831.	2.8	42
11	Transient Outward K ⁺ Current (I _{to}) Underlies the Right Ventricular Initiation of Polymorphic Ventricular Tachycardia in a Transgenic Rabbit Model of Long-QT Syndrome Type 1. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005414.	4.8	15
12	SK Channel Enhancers Attenuate Ca ²⁺ -Dependent Arrhythmia in Hypertrophic Hearts by Regulating Mito-ROS-Dependent Oxidation and Activity of RyR Cardiovascular Research, 2017, 113, cvx005.	3.8	45
13	The role of spatial organization of Ca2+ release sites in the generation of arrhythmogenic diastolic Ca2+ release in myocytes from failing hearts. Basic Research in Cardiology, 2017, 112, 44.	5.9	17
14	Hyperphosphorylation of RyRs Underlies Triggered Activity in Transgenic Rabbit Model of LQT2 Syndrome. Circulation Research, 2014, 115, 919-928.	4.5	64
15	Sarcoplasmic reticulum Ca ²⁺ release is both necessary and sufficient for SK channel activation in ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H738-H746.	3.2	43
16	Redox modification of ryanodine receptors by mitochondriaâ€derived reactive oxygen species contributes to aberrant Ca ²⁺ handling in ageing rabbit hearts. Journal of Physiology, 2013, 591, 5895-5911.	2.9	97
17	Dietary Omega-3 Fatty Acids Promote Arrhythmogenic Remodeling of Cellular Ca2+ Handling in a Postinfarction Model of Sudden Cardiac Death. PLoS ONE, 2013, 8, e78414.	2.5	9
18	Ageâ€associated attenuation of autophagy underlies ryanodine receptor hyperactivity. FASEB Journal, 2013, 27, .	0.5	0

#	Article	IF	Citations
19	Endurance exercise training normalizes repolarization and calcium-handling abnormalities, preventing ventricular fibrillation in a model of sudden cardiac death. Journal of Applied Physiology, 2012, 113, 1772-1783.	2.5	23
20	Shortened Ca ²⁺ Signaling Refractoriness Underlies Cellular Arrhythmogenesis in a Postinfarction Model of Sudden Cardiac Death. Circulation Research, 2012, 110, 569-577.	4.5	99
21	MicroRNA-1 and -133 Increase Arrhythmogenesis in Heart Failure by Dissociating Phosphatase Activity from RyR2 Complex. PLoS ONE, 2011, 6, e28324.	2.5	134
22	Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology. Cardiovascular Research, 2011, 91, 71-79.	3.8	70
23	Arrhythmogenic adverse effects of cardiac glycosides are mediated by redox modification of ryanodine receptors. Journal of Physiology, 2011, 589, 4697-4708.	2.9	36
24	The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovascular Research, 2011, 90, 493-502.	3.8	109
25	Chronic heart failure and the substrate for atrial fibrillation. Cardiovascular Research, 2009, 84, 227-236.	3.8	67
26	Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovascular Research, 2009, 84, 387-395.	3.8	133
27	<i>miR-1</i> Overexpression Enhances Ca ²⁺ Release and Promotes Cardiac Arrhythmogenesis by Targeting PP2A Regulatory Subunit B56α and Causing CaMKII-Dependent Hyperphosphorylation of RyR2. Circulation Research, 2009, 104, 514-521.	4.5	268
28	Modulation of SR Ca Release by Luminal Ca and Calsequestrin in Cardiac Myocytes: Effects of CASQ2 Mutations Linked to Sudden Cardiac Death. Biophysical Journal, 2008, 95, 2037-2048.	0.5	91
29	Repolarization abnormalities and afterdepolarizations in a canine model of sudden cardiac death. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1463-R1472.	1.8	28
30	Redox Modification of Ryanodine Receptors Contributes to Sarcoplasmic Reticulum Ca ²⁺ Leak in Chronic Heart Failure. Circulation Research, 2008, 103, 1466-1472.	4.5	315
31	Abnormal Interactions of Calsequestrin With the Ryanodine Receptor Calcium Release Channel Complex Linked to Exercise-Induced Sudden Cardiac Death. Circulation Research, 2006, 98, 1151-1158.	4.5	179
32	Abnormal intrastore calcium signaling in chronic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14104-14109.	7.1	182
33	Triadin Overexpression Stimulates Excitation-Contraction Coupling and Increases Predisposition to Cellular Arrhythmia in Cardiac Myocytes. Circulation Research, 2005, 96, 651-658.	4.5	73
34	Abnormal Calcium Signaling and Sudden Cardiac Death Associated With Mutation of Calsequestrin. Circulation Research, 2004, 94, 471-477.	4.5	158
35	Modulation of cytosolic and intra-sarcoplasmic reticulum calcium waves by calsequestrin in rat cardiac myocytes. Journal of Physiology, 2004, 561, 515-524.	2.9	50
36	Protein Phosphatases Decrease Sarcoplasmic Reticulum Calcium Content by Stimulating Calcium Release in Cardiac Myocytes. Journal of Physiology, 2003, 552, 109-118.	2.9	74

3