
Changhong Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/116975/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	CSF lipocalin-2 increases early in subarachnoid hemorrhage are associated with neuroinflammation and unfavorable outcome. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2524-2533.	2.4	15
2	Transcriptomic characterization of microglia activation in a rat model of ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S34-S48.	2.4	47
3	Soluble vascular endothelial-cadherin in CSF after subarachnoid hemorrhage. Neurology, 2020, 94, e1281-e1293.	1.5	14
4	Effects of aging, hypertension and diabetes on the mouse brain and heart vasculomes. Neurobiology of Disease, 2019, 126, 117-123.	2.1	31
5	Effects of lipocalin-2 on brain endothelial adhesion and permeability. PLoS ONE, 2019, 14, e0218965.	1.1	27
6	AmpliSeq Transcriptome of Laser Captured Neurons from Alzheimer Brain: Comparison of Single Cell Versus Neuron Pools. , 2019, 10, 1146.		5
7	<scp>HDAC</scp> 3 inhibition prevents oxygen glucose deprivation/reoxygenationâ€induced transendothelial permeability by elevating <scp>PPAR</scp> γ activity <i>inÂvitro</i> . Journal of Neurochemistry, 2019, 149, 298-310.	2.1	20
8	Effects of ischemic postâ€conditioning on neuronal <scp>VEGF</scp> regulation and microglial polarization in a rat model of focal cerebral ischemia. Journal of Neurochemistry, 2018, 146, 160-172.	2.1	43
9	Comparative transcriptome of neurons after oxygen–glucose deprivation: Potential differences in neuroprotection versus reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2236-2250.	2.4	13
10	L-3-n-Butylphthalide Regulates Proliferation, Migration, and Differentiation of Neural Stem Cell In Vitro and Promotes Neurogenesis in APP/PS1 Mouse Model by Regulating BDNF/TrkB/CREB/Akt Pathway. Neurotoxicity Research, 2018, 34, 477-488.	1.3	38
11	From stroke to neurodegenerative diseases: The multi-target neuroprotective effects of 3-n-butylphthalide and its derivatives. Pharmacological Research, 2018, 135, 201-211.	3.1	49
12	A potential gliovascular mechanism for microglial activation: differential phenotypic switching of microglia by endothelium versus astrocytes. Journal of Neuroinflammation, 2018, 15, 143.	3.1	33
13	Dl-3-n-Butylphthalide (NBP): A Promising Therapeutic Agent for Ischemic Stroke. CNS and Neurological Disorders - Drug Targets, 2018, 17, 338-347.	0.8	145
14	Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen–glucose deprivation. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1425-1434.	2.4	56
15	Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Progress in Neurobiology, 2017, 152, 181-199.	2.8	56
16	Characteristics of primary rat microglia isolated from mixed cultures using two different methods. Journal of Neuroinflammation, 2017, 14, 101.	3.1	52
17	Potassium 2-(l-hydroxypentyl)-benzoate attenuates neuroinflammatory responses and upregulates heme oxygenase-1 in systemic lipopolysaccharide-induced inflammation in mice. Acta Pharmaceutica Sinica B, 2017, 7, 470-478.	5.7	22
18	Mechanisms, Imaging, and Therapy in Stroke Recovery. Translational Stroke Research, 2017, 8, 1-2.	2.3	16

CHANGHONG XING

#	Article	IF	CITATIONS
19	Thrombospondin-1 Gene Deficiency Worsens the Neurological Outcomes of Traumatic Brain Injury in Mice. International Journal of Medical Sciences, 2017, 14, 927-936.	1.1	22
20	Effects of Controlled Cortical Impact on the Mouse Brain Vasculome. Journal of Neurotrauma, 2016, 33, 1303-1316.	1.7	15
21	Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nature Medicine, 2016, 22, 1335-1341.	15.2	123
22	Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 2016, 535, 551-555.	13.7	872
23	Activation of microglial Tollâ€like receptor 3 promotes neuronal survival against cerebral ischemia. Journal of Neurochemistry, 2016, 136, 851-858.	2.1	14
24	Lipocalinâ€⊋ enhances angiogenesis in rat brain endothelial cells via reactive oxygen species and ironâ€dependent mechanisms. Journal of Neurochemistry, 2015, 132, 622-628.	2.1	43
25	Effects of Focal Cerebral Ischemia on Exosomal Versus Serum miR126. Translational Stroke Research, 2015, 6, 478-484.	2.3	57
26	Neuronal Production of Lipocalin-2 as a Help-Me Signal for Glial Activation. Stroke, 2014, 45, 2085-2092.	1.0	117
27	Following experimental stroke, the recovering brain is vulnerable to lipoxygenaseâ€dependent semaphorin signaling. FASEB Journal, 2013, 27, 437-445.	0.2	34
28	Cerebrovascular degradation of TRKB by MMP9 in the diabetic brain. Journal of Clinical Investigation, 2013, 123, 3373-3377.	3.9	28
29	Delivering Minocycline into Brain Endothelial Cells with Liposome-Based Technology. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 983-988.	2.4	24
30	Injury and repair in the neurovascular unit. Neurological Research, 2012, 34, 325-330.	0.6	93
31	Pathophysiologic Cascades in Ischemic Stroke. International Journal of Stroke, 2012, 7, 378-385.	2.9	319
32	The Vasculome of the Mouse Brain. PLoS ONE, 2012, 7, e52665.	1.1	44
33	Cellular Mechanisms of Neurovascular Damage and Repair After Stroke. Journal of Child Neurology, 2011, 26, 1193-1198.	0.7	114
34	Induction of Vascular Endothelial Growth Factor and Matrix Metalloproteinase-9 via CD47 Signaling in Neurovascular Cells. Neurochemical Research, 2010, 35, 1092-1097.	1.6	25
35	Plasma and Brain Matrix Metalloproteinase-9 After Acute Focal Cerebral Ischemia in Rats. Stroke, 2009, 40, 2836-2842.	1.0	121
36	Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. Journal of Neuroscience Research, 2009, 87, 164-170.	1.3	114

CHANGHONG XING

#	Article	IF	CITATIONS
37	Neurovascular effects of CD47 signaling: Promotion of cell death, inflammation, and suppression of angiogenesis in brain endothelial cells in vitro. Journal of Neuroscience Research, 2009, 87, 2571-2577.	1.3	35
38	Role of oxidative stress and caspase 3 in CD47â€mediated neuronal cell death. Journal of Neurochemistry, 2009, 108, 430-436.	2.1	32
39	l-3-n-Butylphthalide ameliorates β-amyloid-induced neuronal toxicity in cultured neuronal cells. Neuroscience Letters, 2008, 434, 224-229.	1.0	73
40	Effects of insulin-like growth factor 1 on voltage-gated ion channels in cultured rat hippocampal neurons. Brain Research, 2006, 1072, 30-35.	1.1	17
41	Effects of insulin-like growth factor-1 on okadaic acid-induced apoptosis in SH-SY5Y cells. Cell Biology International, 2005, 29, 803-808.	1.4	14
42	A role of insulin-like growth factor 1 in \hat{l}^2 amyloid-induced disinhibition of hippocampal neurons. Neuroscience Letters, 2005, 384, 93-97.	1.0	10
43	Therapeutic Effects ofLycium barbarumPolysaccharide (LBP) on Irradiation or Chemotherapy-Induced Myelosuppressive Mice. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 155-162.	0.7	56