Ivan Lazić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11688920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy, 2016, 160, 265-280.	1.9	339
2	Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Scientific Reports, 2018, 8, 2676.	3.3	159
3	Image formation modeling in cryo-electron microscopy. Journal of Structural Biology, 2013, 183, 19-32.	2.8	90
4	Revisiting the Al/Al2O3 Interface: Coherent Interfaces and Misfit Accommodation. Scientific Reports, 2014, 4, 4485.	3.3	78
5	A single-molecule van der Waals compass. Nature, 2021, 592, 541-544.	27.8	75
6	Atomic imaging of zeolite-confined single molecules by electron microscopy. Nature, 2022, 607, 703-707.	27.8	49
7	Analytical Review of Direct Stem Imaging Techniques for Thin Samples. Advances in Imaging and Electron Physics, 2017, , 75-184.	0.2	47
8	Analysis of HR-STEM theory for thin specimen. Ultramicroscopy, 2015, 156, 59-72.	1.9	34
9	Visualization of Dopant Oxygen Atoms in a Bi ₂ Sr ₂ CaCu ₂ O ₈₊ <i>_δ</i> Superconductor. Advanced Functional Materials, 2019, 29, 1903843.	14.9	34
10	Analysis of depth-sectioning STEM for thick samples and 3D imaging. Ultramicroscopy, 2019, 207, 112831.	1.9	28
11	Scanning electron microscopy of individual nanoparticle bio-markers in liquid. Ultramicroscopy, 2014, 143, 93-99.	1.9	17
12	An improved molecular dynamics potential for the Al–O system. Computational Materials Science, 2012, 53, 483-492.	3.0	16
13	Integrated Differential Phase Contrast (iDPC)–Direct Phase Imaging in STEM for Thin Samples. Microscopy and Microanalysis, 2016, 22, 36-37.	0.4	15
14	Integrated Differential Phase Contrast (iDPC) STEM: A New Atomic Resolution STEM Technique To Image All Elements Across the Periodic Table. Microscopy and Microanalysis, 2016, 22, 306-307.	0.4	14
15	Microstructure of a Cu film grown on bcc Ta (100) by large-scale molecular-dynamics simulations. Physical Review B, 2010, 81, .	3.2	13
16	Imaging biological samples by integrated differential phase contrast (iDPC) STEM technique. Journal of Structural Biology, 2022, 214, 107837.	2.8	13
17	Low Dose Imaging Using Simultaneous iDPC- and ADF-STEM for Beam Sensitive Crystalline Structures. Microscopy and Microanalysis, 2018, 24, 122-123.	0.4	10
18	Thick (3D) Sample Imaging Using iDPC-STEM at Atomic Scale. Microscopy and Microanalysis, 2018, 24, 170-171.	0.4	5

Ivan Lazıć

#	Article	IF	CITATIONS
19	Imaging atomic motion of light elements in 2D materials with 30 kV electron microscopy. Nanoscale, 2021, 13, 20683-20691.	5.6	5
20	Real-time imaging of atomic electrostatic potentials in 2D materials with 30 keV electrons. Microscopy and Microanalysis, 2021, 27, 1946-1947.	0.4	4
21	3D characterization of nanowire devices with STEM based modes. Semiconductor Science and Technology, 2019, 34, 114001.	2.0	3
22	Exploring simulation methods for self-healing oxide films. Materials Research Society Symposia Proceedings, 2006, 978, .	0.1	2
23	Quantitative Phase Imaging of Ba 2 NaNb 5 O 15. Microscopy and Microanalysis, 2016, 22, 1458-1459.	0.4	1
24	Thick (3D) Sample STEM Imaging at Nano Scale: iDPC and ADF Simultaneously. Microscopy and Microanalysis, 2018, 24, 226-227.	0.4	1
25	Simultaneous iDPC and ADF STEM Imaging at the Limit of Contrast and Resolution. Microscopy and Microanalysis, 2018, 24, 214-215.	0.4	0