
Hiroyuki Nakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11688753/publications.pdf Version: 2024-02-01

Ηιρονιικι Νλελι

#	Article	IF	CITATIONS
1	AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet Journal of Rare Diseases, 2022, 17, .	2.7	9
2	InÂVivo Repair of a Protein Underlying a Neurological Disorder by Programmable RNA Editing. Cell Reports, 2020, 32, 107878.	6.4	44
3	Adeno-associated virus-binding antibodies detected in cats living in the Northeastern United States lack neutralizing activity. Scientific Reports, 2020, 10, 10073.	3.3	5
4	Codon-Optimization of Wild-Type Adeno-Associated Virus Capsid Sequences Enhances DNA Family Shuffling while Conserving Functionality. Molecular Therapy - Methods and Clinical Development, 2019, 12, 71-84.	4.1	22
5	A Quantitative Dot Blot Assay for AAV Titration and Its Use for Functional Assessment of the Adeno-associated Virus Assembly-activating Proteins. Journal of Visualized Experiments, 2018, , .	0.3	2
6	Site-directed RNA repair of endogenous Mecp2 RNA in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9395-E9402.	7.1	77
7	Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. Journal of Virology, 2017, 91, .	3.4	69
8	Identification and Characterization of Nuclear and Nucleolar Localization Signals in the Adeno-Associated Virus Serotype 2 Assembly-Activating Protein. Journal of Virology, 2015, 89, 3038-3048.	3.4	32
9	Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nature Communications, 2014, 5, 3075.	12.8	116
10	Intraganglionic AAV6 Results in Efficient and Long-Term Gene Transfer to Peripheral Sensory Nervous System in Adult Rats. PLoS ONE, 2013, 8, e61266.	2.5	41
11	An Experimental and Computational Evolution-Based Method to Study a Mode of Co-evolution of Overlapping Open Reading Frames in the AAV2 Viral Genome. PLoS ONE, 2013, 8, e66211.	2.5	13
12	AAV Vectors Containing rDNA Homology Display Increased Chromosomal Integration and Transgene Persistence. Molecular Therapy, 2012, 20, 1902-1911.	8.2	36
13	Adeno-associated Virus Serotype 8 (AAV8) Delivery of Recombinant A20 to Skeletal Muscle Reduces Pathological Activation of Nuclear Factor (NF)-κB in Muscle of mdx Mice. Molecular Medicine, 2012, 18, 1527-1535.	4.4	10
14	Direct injection into the dorsal root ganglion: Technical, behavioral, and histological observations. Journal of Neuroscience Methods, 2011, 199, 43-55.	2.5	82
15	A Potential Role of Distinctively Delayed Blood Clearance of Recombinant Adeno-associated Virus Serotype 9 in Robust Cardiac Transduction. Molecular Therapy, 2011, 19, 1079-1089.	8.2	61
16	Hepatic Gene Therapy. Molecular Pathology Library, 2011, , 343-370.	0.1	1
17	Characterization of Genome Integrity for Oversized Recombinant AAV Vector. Molecular Therapy, 2010, 18, 87-92.	8.2	191
18	A NEW RECOMBINANT ADENO-ASSOCIATED VIRUS (AAV)-BASED RANDOM PEPTIDE DISPLAY LIBRARY SYSTEM: INFECTION-DEFECTIVE AAV1.9-3 AS A NOVEL DETARGETED PLATFORM FOR VECTOR EVOLUTION. Gene Therapy and Regulation, 2010, 05, 31-55.	0.3	14

Ηιγογμκι Νακαι

#	Article	IF	CITATIONS
19	Rapidly evolving adeno-associated virus vectors: increasing possibility of gene therapy with custom-made vectors. Drug Delivery System, 2009, 24, 582-591.	0.0	0
20	Efficient and Durable Gene Transfer to Transplanted Heart Using Adeno-associated Virus 9 Vector. Journal of Heart and Lung Transplantation, 2008, 27, 554-560.	0.6	24
21	Frequency and Spectrum of Genomic Integration of Recombinant Adeno-Associated Virus Serotype 8 Vector in Neonatal Mouse Liver. Journal of Virology, 2008, 82, 9513-9524.	3.4	50
22	Recombinant Adeno-Associated Virus Type 8-Mediated Extensive Therapeutic Gene Delivery into Skeletal Muscle of <i>α</i> -Sarcoglycan-Deficient Mice. Human Gene Therapy, 2008, 19, 719-730.	2.7	12
23	The Host Response to Adenovirus, Helper-dependent Adenovirus, and Adeno-associated Virus in Mouse Liver. Molecular Therapy, 2008, 16, 931-941.	8.2	93
24	The Role of DNA-PKcs and Artemis in Opening Viral DNA Hairpin Termini in Various Tissues in Mice. Journal of Virology, 2007, 81, 11304-11321.	3.4	61
25	DNA Palindromes with a Modest Arm Length of ≳20 Base Pairs Are a Significant Target for Recombinant Adeno-Associated Virus Vector Integration in the Liver, Muscles, and Heart in Mice. Journal of Virology, 2007, 81, 11290-11303.	3.4	48
26	Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nature Medicine, 2006, 12, 342-347.	30.7	1,865
27	Liver Transduction with Recombinant Adeno-Associated Virus Is Primarily Restricted by Capsid Serotype Not Vector Genotype. Journal of Virology, 2006, 80, 426-439.	3.4	104
28	Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Molecular Therapy, 2006, 14, 45-53.	8.2	527
29	Large-Scale Molecular Characterization of Adeno-Associated Virus Vector Integration in Mouse Liver. Journal of Virology, 2005, 79, 3606-3614.	3.4	164
30	Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice. Journal of Virology, 2005, 79, 214-224.	3.4	299
31	Modified Infusion Procedures Affect Recombinant Adeno-Associated Virus Vector Type 2 Transduction in the Liver. Human Gene Therapy, 2005, 16, 299-306.	2.7	17
32	Looking into the safety of AAV vectors. Nature, 2003, 424, 251-251.	27.8	58
33	AAV serotype 2 vectors preferentially integrate into active genes in mice. Nature Genetics, 2003, 34, 297-302.	21.4	359
34	Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnology, 2003, 21, 639-644.	17.5	595
35	Pathways of Removal of Free DNA Vector Ends in Normal and DNA-PKcs–Deficient SCID Mouse Hepatocytes Transduced with rAAV Vectors. Human Gene Therapy, 2003, 14, 871-881.	2.7	26
36	Helper-independent and AAV-ITR-independent chromosomal integration of double-stranded linear DNA vectors in mice. Molecular Therapy, 2003, 7, 101-111.	8.2	48

Ηιγογικι Νακαι

#	Article	IF	CITATIONS
37	Free DNA ends are essential for concatemerization of synthetic Double-Stranded Adeno-Associated virus vector genomes transfected into mouse hepatocytes in vivo. Molecular Therapy, 2003, 7, 112-121.	8.2	22
38	Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood, 2003, 102, 2412-2419.	1.4	196
39	Title is missing!. Japanese Journal of Thrombosis and Hemostasis, 2003, 14, 304-309.	0.1	Ο
40	A Limited Number of Transducible Hepatocytes Restricts a Wide-Range Linear Vector Dose Response in Recombinant Adeno-Associated Virus-Mediated Liver Transduction. Journal of Virology, 2002, 76, 11343-11349.	3.4	92
41	The Journal of Gene Medicine 2001 Young Investigator Award. Journal of Gene Medicine, 2001, 3, 599-600.	2.8	0
42	Extrachromosomal Recombinant Adeno-Associated Virus Vector Genomes Are Primarily Responsible for Stable Liver Transduction In Vivo. Journal of Virology, 2001, 75, 6969-6976.	3.4	417
43	Sustained survival of human hepatocytes in mice: A model for in vivo infection with human hepatitis B and hepatitis delta viruses. Nature Medicine, 2000, 6, 327-331.	30.7	172
44	Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nature Biotechnology, 2000, 18, 527-532.	17.5	191
45	Nonrandom Transduction of Recombinant Adeno-Associated Virus Vectors in Mouse Hepatocytes In Vivo: Cell Cycling Does Not Influence Hepatocyte Transduction. Journal of Virology, 2000, 74, 3793-3803.	3.4	124
46	Recruitment of Single-Stranded Recombinant Adeno-Associated Virus Vector Genomes and Intermolecular Recombination Are Responsible for Stable Transduction of Liver In Vivo. Journal of Virology, 2000, 74, 9451-9463.	3.4	174
47	Isolation of Recombinant Adeno-Associated Virus Vector-Cellular DNA Junctions from Mouse Liver. Journal of Virology, 1999, 73, 5438-5447.	3.4	178
48	Adeno-Associated Viral Vector-Mediated Gene Transfer of Human Blood Coagulation Factor IX Into Mouse Liver. Blood, 1998, 91, 4600-4607.	1.4	181
49	Adeno-Associated Viral Vector-Mediated Gene Transfer of Human Blood Coagulation Factor IX Into Mouse Liver. Blood, 1998, 91, 4600-4607.	1.4	5
50	Hemizygous expression of the wild-type p53 allele may confer a selective growth advantage before complete inactivation of the p53 gene in the progression of chronic myelogenous leukaemia. British Journal of Haematology, 1995, 90, 147-155.	2.5	8
51	Chromosome 17 Abnormalities and Inactivation of the P53 Gene in Chronic Myeloid Leukemia and Their Prognostic Significance. Leukemia and Lymphoma, 1995, 19, 213-221.	1.3	32
52	Myelomonocytic crisis with t(5;17) and a p53 mutation in a patient with chronic myelogenous leukemia. American Journal of Hematology, 1994, 45, 335-340.	4.1	5
53	Prognostic significance of loss of a chromosome 17p and p53 gene mutations in blast crisis of chronic myelogenous leukaemia. British Journal of Haematology, 1994, 87, 425-427.	2.5	20
54	Multiple aberrant splicing of the p53 transcript without genomic mutations around exonâ€intron junctions in a case of chronic myelogenous leukaemia in blast crisis: a possible novel mechanism of p53 inactivation. British Journal of Haematology, 1994, 87, 839-842.	2.5	12

#	Article	IF	CITATIONS
55	The Role of DNA Repair Pathways in Adeno-Associated Virus Infection and Viral Genome Replication / Recombination / Integration. , 0, , .		5