
Hector D Abruna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11688748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights into methanol and formic acid electro-oxidation on Pt: Simultaneous DEMS and ATR-SEIRAS study under well-defined flow conditions and simulations of CO spectra. Journal of Chemical Physics, 2022, 156, 034703.	1.2	6
2	Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Science Advances, 2022, 8, eabj1584.	4.7	94
3	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
4	Competitive nucleation and growth behavior in Li–Se batteries. Energy and Environmental Science, 2022, 15, 1493-1502.	15.6	16
5	Visualization of Sodium Metal Anodes via <i>Operando</i> X-Ray and Optical Microscopy: Controlling the Morphological Evolution of Sodium Metal Plating. ACS Applied Materials & Interfaces, 2022, 14, 10438-10446.	4.0	20
6	A completely precious metal–free alkaline fuel cell with enhanced performance using a carbon-coated nickel anode. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119883119.	3.3	54
7	Metal Monolayers on Command: Underpotential Deposition at Nanocrystal Surfaces: A Quantitative <i>Operando</i> Electrochemical Transmission Electron Microscopy Study. ACS Energy Letters, 2022, 7, 1292-1297.	8.8	7
8	Oxidative Stability Matters: A Case Study of Palladium Hydride Nanosheets for Alkaline Fuel Cells. Journal of the American Chemical Society, 2022, 144, 8106-8114.	6.6	27
9	Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds. Nature, 2022, 605, 687-695.	13.7	65
10	<i>Ex Situ</i> and <i>In Situ</i> Analyses of the Mechanism of Electrocatalytic Hydrogen Peroxide Production by Co _{<i>x</i>} Zn _{1–<i>x</i>} O (0 < <i>x</i> < 0.018) Materials in Alkaline Media. ACS Applied Energy Materials, 2022, 5, 6597-6605.	2.5	2
11	Surface Roughness-Independent Homogeneous Lithium Plating in Synergetic Conditioned Electrolyte. ACS Energy Letters, 2022, 7, 2219-2227.	8.8	8
12	Investigation of ion-electrode interactions of linear polyimides and alkali metal ions for next generation alternative-ion batteries. Chemical Science, 2022, 13, 9191-9201.	3.7	11
13	Rate and Mechanism of Electrochemical Formation of Surface-Bound Hydrogen on Pt(111) Single Crystals. Journal of Physical Chemistry Letters, 2022, 13, 6383-6390.	2.1	3
14	Lithium–sulfur redox: challenges and opportunities. Current Opinion in Electrochemistry, 2021, 25, 100652.	2.5	14
15	<i>Operando</i> Methods in Electrocatalysis. ACS Catalysis, 2021, 11, 1136-1178.	5.5	131
16	Performance optimization and fast rate capabilities of novel polymer cathode materials through balanced electronic and ionic transport. Journal of Materials Chemistry A, 2021, 9, 5657-5663.	5.2	19
17	Organic electrode materials for fast-rate, high-power battery applications. Materials Reports Energy, 2021, 1, 100008.	1.7	43
18	Anion Exchange and Water Dynamics in a Phosphonium-Based Alkaline Anion Exchange Membrane Material for Fuel Cells: An Electrochemical Quartz Crystal Microbalance Study. ACS Applied Materials & Interfaces, 2021, 13, 10979-10986.	4.0	5

#	Article	IF	CITATIONS
19	Interface-Enhanced Catalytic Selectivity on the C ₂ Products of CO ₂ Electroreduction. ACS Catalysis, 2021, 11, 2473-2482.	5.5	92
20	Designing Synergistic Electrocatalysts for H ₂ Oxidation and Evolution Reactions in Alkaline Media. Journal of Physical Chemistry C, 2021, 125, 7188-7203.	1.5	9
21	Methanol Oxidation at Platinum in Alkaline Media: A Study of the Effects of Hydroxide Concentration and of Mass Transport. ChemPhysChem, 2021, 22, 1397-1406.	1.0	12
22	Epitaxial Thin-Film Spinel Oxides as Oxygen Reduction Electrocatalysts in Alkaline Media. Chemistry of Materials, 2021, 33, 4006-4013.	3.2	9
23	Enhancement of the Oxygen Reduction Reaction Activity of Pt by Tuning Its <i>d</i> -Band Center via Transition Metal Oxide Support Interactions. ACS Catalysis, 2021, 11, 9317-9332.	5.5	87
24	A channel flow cell with double disk electrodes for oxygen electroreduction study at elevated temperatures and pressures: Theory. Journal of Electroanalytical Chemistry, 2021, 896, 115251.	1.9	1
25	Understanding the Impacts of Li Stripping Overpotentials at the Counter Electrode by Three-Electrode Coin Cell Measurements. Analytical Chemistry, 2021, 93, 15459-15467.	3.2	15
26	Ni-rich LiNi0.88Mn0.06Co0.06O2 cathode interwoven by carbon fiber with improved rate capability and stability. Journal of Power Sources, 2020, 447, 227344.	4.0	24
27	Methanol Oxidation Using Ternary Ordered Intermetallic Electrocatalysts: A DEMS Study. ACS Catalysis, 2020, 10, 770-776.	5.5	45
28	Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities. Journal of the American Chemical Society, 2020, 142, 16-20.	6.6	256
29	Electron Tunneling through Boron Nitride Confirms Marcus–Hush Theory Predictions for Ultramicroelectrodes. ACS Nano, 2020, 14, 993-1002.	7.3	16
30	Regulating lithium nucleation and growth by zinc modified current collectors. Nano Research, 2020, 13, 45-51.	5.8	19
31	The Intricate Love Affairs between MoS ₂ and Metallic Substrates. Advanced Materials Interfaces, 2020, 7, 2001324.	1.9	15
32	Enhanced ORR Kinetics on Au-Doped Pt–Cu Porous Films in Alkaline Media. ACS Catalysis, 2020, 10, 9967-9976.	5.5	65
33	Tailoring the Antipoisoning Performance of Pd for Formic Acid Electrooxidation via an Ordered PdBi Intermetallic. ACS Catalysis, 2020, 10, 9977-9985.	5.5	75
34	Activity–Stability Relationship in Au@Pt Nanoparticles for Electrocatalysis. ACS Energy Letters, 2020, 5, 2827-2834.	8.8	49
35	Synergistic Bimetallic Metallic Organic Framework-Derived Pt–Co Oxygen Reduction Electrocatalysts. ACS Nano, 2020, 14, 13069-13080.	7.3	82
36	Electrochemical Screening of Metallic Oxygen Reduction Reaction Catalyst Thin Films Using Getter Cosputtering. ACS Combinatorial Science, 2020, 22, 339-347.	3.8	1

#	Article	IF	CITATIONS
37	Multifunctional Electrocatalysts: Ru–M (M = Co, Ni, Fe) for Alkaline Fuel Cells and Electrolyzers. ACS Catalysis, 2020, 10, 4608-4616.	5.5	102
38	An Innovative Lithium Ion Battery System Based on a Cu ₂ S Anode Material. ACS Applied Materials & Interfaces, 2020, 12, 17396-17405.	4.0	24
39	Strain and Charge Doping Fingerprints of the Strong Interaction between Monolayer MoS ₂ and Gold. Journal of Physical Chemistry Letters, 2020, 11, 6112-6118.	2.1	77
40	Combinatorial Studies of Palladium-Based Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 2020, 142, 3980-3988.	6.6	63
41	Crossâ€linking Effects on Performance Metrics of Phenazineâ€Based Polymer Cathodes. ChemSusChem, 2020, 13, 2428-2435.	3.6	41
42	Enhancing the Electrocatalytic Activity of Pd/M (M = Ni, Mn) Nanoparticles for the Oxygen Reduction Reaction in Alkaline Media through Electrochemical Dealloying. ACS Catalysis, 2020, 10, 5891-5898.	5.5	74
43	Single-phase Ru1â^'â^'Mn Co O2 nanoparticles as highly effective oxygen reduction electrocatalysts in alkaline media with enhanced stability and fuel-tolerance. Applied Catalysis B: Environmental, 2020, 277, 119149.	10.8	13
44	Quantifying the Atomic Ordering of Binary Intermetallic Nanocatalysts Using In Situ Heating STEM and XRD. Microscopy and Microanalysis, 2019, 25, 1488-1489.	0.2	1
45	Sulfur encapsulation by MOF-derived CoS ₂ embedded in carbon hosts for high-performance Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 21128-21139.	5.2	79
46	Uniform lithium deposition on N-doped carbon-coated current collectors. Chemical Communications, 2019, 55, 10124-10127.	2.2	24
47	Ultrahigh Rate Performance of a Robust Lithium Nickel Manganese Cobalt Oxide Cathode with Preferentially Orientated Li-Diffusing Channels. ACS Applied Materials & Interfaces, 2019, 11, 41178-41187.	4.0	20
48	Atomic‣cale Visualization of Electrochemical Lithiation Processes in Monolayer MoS ₂ by Cryogenic Electron Microscopy. Advanced Energy Materials, 2019, 9, 1902773.	10.2	33
49	Rock-Salt-Type MnCo ₂ O ₃ /C as Efficient Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Chemistry of Materials, 2019, 31, 9331-9337.	3.2	15
50	Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1974-1983.	3.3	98
51	Metal–Organic-Framework-Derived Co–Fe Bimetallic Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 2019, 141, 10744-10750.	6.6	176
52	Elucidation of the electrochemical behavior of phenothiazine-based polyaromatic amines. Tetrahedron, 2019, 75, 4244-4249.	1.0	7
53	High-Loading Composition-Tolerant Co–Mn Spinel Oxides with Performance beyond 1 W/cm ² in Alkaline Polymer Electrolyte Fuel Cells. ACS Energy Letters, 2019, 4, 1251-1257.	8.8	77
54	Regulating Key Variables and Visualizing Lithium Dendrite Growth: An <i>Operando</i> X-ray Study. Journal of the American Chemical Society, 2019, 141, 8441-8449.	6.6	96

#	Article	IF	CITATIONS
55	Rh and Rh Alloy Nanoparticles as Highly Active H ₂ Oxidation Catalysts for Alkaline Fuel Cells. ACS Catalysis, 2019, 9, 5057-5062.	5.5	45
56	Golden Palladium Zinc Ordered Intermetallics as Oxygen Reduction Electrocatalysts. ACS Nano, 2019, 13, 5968-5974.	7.3	83
57	Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nature Communications, 2019, 10, 1506.	5.8	212
58	A Strategy for Increasing the Efficiency of the Oxygen Reduction Reaction in Mn-Doped Cobalt Ferrites. Journal of the American Chemical Society, 2019, 141, 4412-4421.	6.6	90
59	Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2019, 141, 19241-19245.	6.6	154
60	Octahedral spinel electrocatalysts for alkaline fuel cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24425-24432.	3.3	60
61	<i>In Situ</i> X-ray Absorption Spectroscopy of a Synergistic Co–Mn Oxide Catalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2019, 141, 1463-1466.	6.6	121
62	Pt-Rich _{core} /Sn-Rich _{subsurface} /Pt _{skin} Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society, 2018, 140, 3791-3797.	6.6	166
63	High-Loading Intermetallic Pt ₃ Co/C Core–Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). Chemistry of Materials, 2018, 30, 1532-1539.	3.2	131
64	Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries. Accounts of Chemical Research, 2018, 51, 273-281.	7.6	249
65	High-Performance Ga ₂ O ₃ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5519-5526.	4.0	60
66	Direct visualization of sulfur cathodes: new insights into Li–S batteries <i>via operando</i> X-ray based methods. Energy and Environmental Science, 2018, 11, 202-210.	15.6	96
67	Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano, 2018, 12, 10463-10472.	7.3	203
68	Pt-Decorated Composition-Tunable Pd–Fe@Pd/C Core–Shell Nanoparticles with Enhanced Electrocatalytic Activity toward the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 7248-7255.	6.6	116
69	SnS/C nanocomposites for high-performance sodium ion battery anodes. RSC Advances, 2018, 8, 23847-23853.	1.7	28
70	Copper-Induced Formation of Structurally Ordered Pt–Fe–Cu Ternary Intermetallic Electrocatalysts with Tunable Phase Structure and Improved Stability. Chemistry of Materials, 2018, 30, 5987-5995.	3.2	96
71	Phenothiazine-Based Polymer Cathode Materials with Ultrahigh Power Densities for Lithium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3560-3564.	2.5	63
72	Relaxation of asymmetric crystallographic tilt: <i>In situ</i> x-ray diffraction studies of epitaxial electrodeposition of bismuth on GaAs (110). Journal of Applied Physics, 2018, 124, .	1.1	3

#	Article	IF	CITATIONS
73	Dynamic Hosts for High-Performance Li–S Batteries Studied by Cryogenic Transmission Electron Microscopy and in Situ X-ray Diffraction. ACS Energy Letters, 2018, 3, 1325-1330.	8.8	47
74	The effect of alloying of transition metals (MÂ= Fe, Co, Ni) with palladium catalysts on the electrocatalytic activity for the oxygen reduction reaction in alkaline media. Electrochimica Acta, 2018, 283, 1045-1052.	2.6	30
75	Porous Fe ₃ O ₄ Nanospheres as Effective Sulfur Hosts for Li-S Batteries. Journal of the Electrochemical Society, 2018, 165, A1656-A1661.	1.3	23
76	Solar energy conversion, storage, and release using an integrated solar-driven redox flow battery. Journal of Materials Chemistry A, 2017, 5, 5362-5372.	5.2	52
77	Electrochemical Hydrogen Evolution at Ordered Mo ₇ Ni ₇ . ACS Catalysis, 2017, 7, 3375-3383.	5.5	62
78	IrPdRu/C as H ₂ Oxidation Catalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 2017, 139, 6807-6810.	6.6	117
79	Synthesis and electrochemical characterization of TixTayAlzN1-δOγ for fuel cell catalyst supports. Journal of Solid State Chemistry, 2017, 246, 293-301.	1.4	1
80	Rediscovering Cr2O72–, an Oxidant with Unrivaled Power and Energy Density, for Affordable, Next-Generation Energy Storage and Conversion. ACS Energy Letters, 2017, 2, 1439-1443.	8.8	3
81	Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & amp: Interfaces. 2017. 9. 35811-35819.	4.0	73
82	Hybrid Organic Electrodes: The Rational Design and Synthesis of High-Energy Redox-Active Pendant Functionalized Polypyrroles for Electrochemical Energy Storage. Journal of the Electrochemical Society, 2017, 164, A1946-A1951.	1.3	6
83	Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. ACS Catalysis, 2017, 7, 6485-6492.	5.5	141
84	Rapid hydrothermal synthesis of Li3VO4 with different favored facets. Journal of Solid State Electrochemistry, 2017, 21, 2547-2553.	1.2	8
85	Rotating Disk Electrode Voltammetry of Thin Films of Novel Oxide Materials. Journal of the Electrochemical Society, 2017, 164, H1154-H1160.	1.3	10
86	In Situ TEM for Electrochemical Energy Storage and Conversion Systems. Microscopy and Microanalysis, 2016, 22, 1326-1327.	0.2	0
87	Hydroxyl Radical Generation and DNA Nuclease Activity: A Mechanistic Study Based on a Surfaceâ€Immobilized Copper Thioether Clipâ€Phen Derivative. Chemistry - A European Journal, 2016, 22, 10081-10089.	1.7	23
88	In Situ Electrochemical Cell TEM for Battery and Fuel Cell Systems. Microscopy and Microanalysis, 2016, 22, 752-753.	0.2	0
89	Nanomaterial datasets to advance tomography in scanning transmission electron microscopy. Scientific Data, 2016, 3, 160041.	2.4	42
90	Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework. ACS Central Science, 2016, 2, 667-673.	5.3	349

#	Article	IF	CITATIONS
91	Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nature Communications, 2016, 7, 11941.	5.8	67
92	The Sodium–Oxygen/Carbon Dioxide Electrochemical Cell. ChemSusChem, 2016, 9, 1600-1606.	3.6	14
93	Structure of the Photo-catalytically Active Surface of SrTiO ₃ . Journal of the American Chemical Society, 2016, 138, 7816-7819.	6.6	64
94	In situ electrochemical characterization of poly-3,4-ethylenedioxythiophene/tetraalkylphenylene diamine films and their potential use in electrochemical energy storage devices. Journal of Electroanalytical Chemistry, 2016, 765, 65-72.	1.9	10
95	In Situ TEM for Quantitative Electrochemistry of Energy Systems. Microscopy and Microanalysis, 2015, 21, 1509-1510.	0.2	4
96	Cationâ€Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 13225-13229.	7.2	86
97	Unassisted HI photoelectrolysis using n-WSe ₂ solar absorbers. Physical Chemistry Chemical Physics, 2015, 17, 13984-13991.	1.3	15
98	<i>Operando</i> X-ray Scattering and Spectroscopic Analysis of Germanium Nanowire Anodes in Lithium Ion Batteries. Langmuir, 2015, 31, 2028-2035.	1.6	33
99	Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films. ACS Nano, 2015, 9, 3178-3183.	7.3	318
100	Tailoring Pore Size of Nitrogenâ€Doped Hollow Carbon Nanospheres for Confining Sulfur in Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1401752.	10.2	273
101	Synthesis of carbon supported ordered tetragonal pseudo-ternary Pt2M′M″ (MÂ=ÂFe, Co, Ni) nanoparticles and their activity for oxygen reduction reaction. Journal of Power Sources, 2015, 280, 459-466.	4.0	41
102	Morphology and Activity Tuning of Cu ₃ Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Dealloying. Nano Letters, 2015, 15, 1343-1348.	4.5	131
103	Template-Free Synthesis of Hollow-Structured Co ₃ O ₄ Nanoparticles as High-Performance Anodes for Lithium-Ion Batteries. ACS Nano, 2015, 9, 1775-1781.	7.3	275
104	Synthesis and Characterization of Poly-3,4-ethylenedioxythiophene/2,5-Dimercapto-1,3,4-thiadiazole (PEDOT-DMcT) Hybrids. Electrochimica Acta, 2015, 167, 55-60.	2.6	21
105	Conductivity and Microstructure of Combinatorially Sputter-Deposited Ta–Ti–Al Nitride Thin Films. Chemistry of Materials, 2015, 27, 4515-4524.	3.2	7
106	Origin of Multiple Peaks in the Potentiodynamic Oxidation of CO Adlayers on Pt and Ru-Modified Pt Electrodes. Journal of Physical Chemistry Letters, 2015, 6, 1899-1906.	2.1	38
107	Electrochemical lithiation-induced polymorphism of anthraquinone derivatives observed by operando X-ray diffraction. Physical Chemistry Chemical Physics, 2015, 17, 27665-27671.	1.3	6
108	Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering. Journal of the American Chemical Society, 2015, 137, 14992-14998.	6.6	85

#	Article	IF	CITATIONS
109	High power organic cathodes using thin films of electropolymerized benzidine polymers. Chemical Communications, 2015, 51, 14674-14677.	2.2	12
110	The Mechanism of the Oneâ€5tep Synthesis of Hollowâ€6tructured Li ₃ VO ₄ as an Anode for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 5608-5612.	1.7	38
111	Single layer graphene as an electrochemical platform. Faraday Discussions, 2014, 172, 27-45.	1.6	11
112	Water Oxidation Catalysis by Co(II) Impurities in Co(III) ₄ O ₄ Cubanes. Journal of the American Chemical Society, 2014, 136, 17681-17688.	6.6	152
113	Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy. RSC Advances, 2014, 4, 18347.	1.7	122
114	A rechargeable Na–CO ₂ /O ₂ battery enabled by stable nanoparticle hybrid electrolytes. Journal of Materials Chemistry A, 2014, 2, 17723-17729.	5.2	92
115	Theoretical Studies of Carbonyl-Based Organic Molecules for Energy Storage Applications: The Heteroatom and Substituent Effect. Journal of Physical Chemistry C, 2014, 118, 6046-6051.	1.5	91
116	Generalized Platform for Antibody Detection using the Antibody Catalyzed Water Oxidation Pathway. Journal of the American Chemical Society, 2014, 136, 1879-1883.	6.6	30
117	Electrogenerated Chemiluminescence of Bithiophenes with Methylthio Functionalities. Journal of Physical Chemistry C, 2014, 118, 924-932.	1.5	5
118	An Electrochemical Quartz Crystal Microbalance Study of a Prospective Alkaline Anion Exchange Membrane Material for Fuel Cells: Anion Exchange Dynamics and Membrane Swelling. Journal of the American Chemical Society, 2014, 136, 5309-5322.	6.6	43
119	Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions. Ultramicroscopy, 2014, 140, 26-31.	0.8	35
120	Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte. Nano Letters, 2014, 14, 1453-1459.	4.5	238
121	Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society, 2014, 136, 9643-9649.	6.6	220
122	CO ₂ and O ₂ Evolution at High Voltage Cathode Materials of Li-Ion Batteries: A Differential Electrochemical Mass Spectrometry Study. Analytical Chemistry, 2014, 86, 6197-6201.	3.2	105
123	Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries. Journal of Physical Chemistry Letters, 2014, 5, 882-885.	2.1	101
124	Amylopectin Wrapped Graphene Oxide/Sulfur for Improved Cyclability of Lithium–Sulfur Battery. ACS Nano, 2013, 7, 8801-8808.	7.3	181
125	Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2013, 135, 16736-16743.	6.6	734
126	β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage. Journal of the American Chemical Society, 2013, 135, 16821-16824.	6.6	949

#	Article	IF	CITATIONS
127	Energy in the Age of Sustainability. Journal of Chemical Education, 2013, 90, 1411-1413.	1.1	11
128	Increasing the Gravimetric Energy Density of Organic Based Secondary Battery Cathodes Using Small Radius Cations (Li ⁺ and Mg ²⁺). Journal of the American Chemical Society, 2013, 135, 14532-14535.	6.6	67
129	In operando X-ray studies of the conversion reaction in Mn ₃ O ₄ lithium battery anodes. Journal of Materials Chemistry A, 2013, 1, 2094-2103.	5.2	118
130	An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts. Review of Scientific Instruments, 2013, 84, 024101.	0.6	9
131	Lithium–Sulfur Battery Cathode Enabled by Lithium–Nitrile Interaction. Journal of the American Chemical Society, 2013, 135, 763-767.	6.6	329
132	Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling. Chemistry of Materials, 2013, 25, 132-141.	3.2	75
133	Kinetics of Interfacial Electron Transfer at Single-Layer Graphene Electrodes in Aqueous and Nonaqueous Solutions. Langmuir, 2013, 29, 1683-1694.	1.6	106
134	Designing conducting polymer films for electrochemical energy storage technologies. RSC Advances, 2013, 3, 1957-1964.	1.7	32
135	Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 2013, 12, 81-87.	13.3	1,768
136	Self-Poisoning during BH ₄ [–] Oxidation at Pt and Au, and in Situ Poison Removal Procedures for BH ₄ [–] Fuel Cells. Journal of Physical Chemistry C, 2013, 117, 1571-1581.	1.5	52
137	Synthesis and Electrochemical and Computational Analysis of Two New Families of Thiophene-Carbonyl Molecules. Journal of Physical Chemistry C, 2013, 117, 6022-6032.	1.5	26
138	High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013, 12, 518-522.	13.3	4,021
139	In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries. Journal of Materials Chemistry A, 2013, 1, 1433-1440.	5.2	138
140	Infiltrating sulfur in hierarchical architecture MWCNT@meso C core–shell nanocomposites for lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2013, 15, 9051.	1.3	65
141	Coalescence in the Thermal Annealing of Nanoparticles: An in Situ STEM Study of the Growth Mechanisms of Ordered Pt–Fe Nanoparticles in a KCl Matrix. Chemistry of Materials, 2013, 25, 1436-1442.	3.2	72
142	<i>In Situ</i> Electron Energy-Loss Spectroscopy in Liquids. Microscopy and Microanalysis, 2013, 19, 1027-1035.	0.2	140
143	High Throughput Thin Film Pt-M Alloys for Fuel Electrooxidation: Low Concentrations of M (M = Sn,) Tj ETQq1 1 159, F880-F887.	0.784314 1.3	rgBT /Overloo 16
144	Cyclometalated Ruthenium Oligomers with 2,3-Di(2-pyridyl)-5,6-diphenylpyrazine: A Combined Experimental, Computational, and Comparison Study with Noncyclometalated Analogous. Inorganic Chemistry, 2012, 51, 13312-13320.	1.9	15

#	Article	IF	CITATIONS
145	Tuning Oxygen Reduction Reaction Activity via Controllable Dealloying: A Model Study of Ordered Cu ₃ Pt/C Intermetallic Nanocatalysts. Nano Letters, 2012, 12, 5230-5238.	4.5	291
146	Quantification of the Surface Diffusion of Tripodal Binding Motifs on Graphene Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2012, 134, 6224-6236.	6.6	56
147	Mechanistic Studies of Formate Oxidation on Platinum in Alkaline Medium. Journal of Physical Chemistry C, 2012, 116, 5810-5820.	1.5	76
148	Rhenium Complexes of 2,3-Di(2-pyridyl)-5,6-diphenylpyrazine: Synthesis, Characterization, and Reactivity. Organometallics, 2012, 31, 1161-1167.	1.1	12
149	New Insights into the Mechanism and Kinetics of Adsorbed CO Electrooxidation on Platinum: Online Mass Spectrometry and Kinetic Monte Carlo Simulation Studies. Journal of Physical Chemistry C, 2012, 116, 11040-11053.	1.5	33
150	Three-Dimensional Tracking and Visualization of Hundreds of Ptâ^'Co Fuel Cell Nanocatalysts During Electrochemical Aging. Nano Letters, 2012, 12, 4417-4423.	4.5	162
151	Phosphonium-Functionalized Polyethylene: A New Class of Base-Stable Alkaline Anion Exchange Membranes. Journal of the American Chemical Society, 2012, 134, 18161-18164.	6.6	425
152	Facile Synthesis of Carbon-Supported Pd–Co Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration. Chemistry of Materials, 2012, 24, 2274-2281.	3.2	163
153	Thermodynamic, Kinetic, Surface p <i>K</i> _a , and Structural Aspects of Self-Assembled Monolayers of Thio Compounds on Gold. Langmuir, 2012, 28, 17825-17831.	1.6	29
154	Membraneless, Room-Temperature, Direct Borohydride/Cerium Fuel Cell with Power Density of Over 0.25 W/cm ² . Journal of the American Chemical Society, 2012, 134, 6076-6079.	6.6	71
155	Reactivity of Monolayer Chemical Vapor Deposited Graphene Imperfections Studied Using Scanning Electrochemical Microscopy. ACS Nano, 2012, 6, 3070-3079.	7.3	115
156	Tailored redox functionality of small organics for pseudocapacitive electrodes. Energy and Environmental Science, 2012, 5, 7176.	15.6	58
157	Poly(2,5â€dimercaptoâ€1,3,4â€thiadiazole) as a Cathode for Rechargeable Lithium Batteries with Dramatically Improved Performance. Chemistry - A European Journal, 2012, 18, 8521-8526.	1.7	34
158	Single-Molecule Conductance of Pyridine-Terminated Dithienylethene Switch Molecules. ACS Nano, 2011, 5, 5115-5123.	7.3	95
159	Near-Infrared Absorbing and Emitting Rullâ^PtllHeterodimetallic Complexes of Dpdpz (Dpdpz =) Tj ETQq1 1 0.784	4314 rgBT 1.9	/Qyerlock 1(
160	Near-IR Electrochromism in Electropolymerized Films of a Biscyclometalated Ruthenium Complex Bridged by 1,2,4,5-Tetra(2-pyridyl)benzene. Journal of the American Chemical Society, 2011, 133, 20720-20723.	6.6	151
161	Mononuclear and Dinuclear Ruthenium Complexes of 2,3-Di-2-pyridyl-5,6-diphenylpyrazine: Synthesis and Spectroscopic and Electrochemical Studies. Inorganic Chemistry, 2011, 50, 517-524.	1.9	39
162	Electrocatalysis of Direct Alcohol Fuel Cells: Quantitative DEMS Studies. Structure and Bonding, 2011, , 33-83.	1.0	21

#	Article	IF	CITATIONS
163	A Mechanistic Differential Electrochemical Mass Spectrometry (DEMS) and in situ Fourier Transform Infrared Investigation of Dimethoxymethane Electro-Oxidation at Platinum. Journal of Physical Chemistry C, 2011, 115, 13293-13302.	1.5	8
164	Electrochemistry of Individual Monolayer Graphene Sheets. ACS Nano, 2011, 5, 2264-2270.	7.3	243
165	Energy-Level-Related Response of Cathodic Electrogenerated-Chemiluminescence of Self-Assembled CdSe/ZnS Quantum Dot Films. Journal of Physical Chemistry C, 2011, 115, 18822-18828.	1.5	45
166	Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene. Journal of the American Chemical Society, 2011, 133, 17614-17617.	6.6	149
167	Towards organic energy storage: characterization of 2,5-bis(methylthio)thieno[3,2-b]thiophene. Journal of Materials Chemistry, 2011, 21, 9553.	6.7	23
168	Electrocatalysis of 2,5-Dimercapto-1,3,5-thiadiazole by 3,4-Ethylenedioxy-Substituted Conducting Polymers. Langmuir, 2011, 27, 13904-13909.	1.6	17
169	Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized on <scp>l</scp> -Cysteine Self-Assembled Gold Electrode. Langmuir, 2011, 27, 2052-2057.	1.6	37
170	Alternative Oxidants for High-Power Fuel Cells Studied by Rotating Disk Electrode (RDE) Voltammetry at Pt, Au, and Glassy Carbon Electrodes. Journal of Physical Chemistry C, 2011, 115, 6073-6084.	1.5	16
171	Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies. Journal of Physical Chemistry C, 2011, 115, 25132-25137.	1.5	515
172	Pendant thioether polymer for redox capacitor cathodes. Electrochemistry Communications, 2011, 13, 462-465.	2.3	18
173	Electro-oxidation of BH4â^' in dimethylsulfoxide and dimethylformamide studied by rotating disk electrode voltammetry. Journal of Power Sources, 2011, 196, 6223-6227.	4.0	3
174	Silver delafossite nitride, AgTaN2?. Journal of Solid State Chemistry, 2011, 184, 7-11.	1.4	17
175	Xâ€ray Fluorescence Investigation of Ordered Intermetallic Phases as Electrocatalysts towards the Oxidation of Small Organic Molecules. Chemistry - A European Journal, 2010, 16, 13689-13697.	1.7	7
176	A light-emitting memristor. Organic Electronics, 2010, 11, 150-153.	1.4	44
177	Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications. Journal of the American Chemical Society, 2010, 132, 3400-3404.	6.6	440
178	Electrochemical and Computational Studies on the Electrocatalytic Effect of Conducting Polymers toward the Redox Reactions of Thiadiazole-Based Thiolate Compounds. Journal of Physical Chemistry C, 2010, 114, 6169-6176.	1.5	25
179	Highly Stable and CO-Tolerant Pt/Ti _{0.7} W _{0.3} O ₂ Electrocatalyst for Proton-Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 2010, 132, 10218-10220.	6.6	129
180	Pt-Decorated PdCo@Pd/C Coreâ^'Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2010, 132, 17664-17666.	6.6	300

#	Article	IF	CITATIONS
181	Improved Fuel Cell Oxidation Catalysis in Pt _{1â^'<i>x</i>} Ta _{<i>x</i>} . Chemistry of Materials, 2010, 22, 1080-1087.	3.2	28
182	Synthesis of Ptâ^'Moâ^'N Thin Film and Catalytic Activity for Fuel Cells. Chemistry of Materials, 2010, 22, 3451-3456.	3.2	28
183	Phase Behavior of Pseudobinary Precious Metalâ^ Carbide Systems. Journal of Physical Chemistry C, 2010, 114, 21664-21671.	1.5	5
184	Anthracene-Bridged Binuclear Ruthenium Complexes: Electrochemical and Spectroscopic Evidence of Electronic Communication Through the π System. Inorganic Chemistry, 2010, 49, 796-804.	1.9	44
185	Theoretical and Electrochemical Analysis of Poly(3,4-alkylenedioxythiophenes): Electron-Donating Effects and Onset of p-Doped Conductivity. Journal of Physical Chemistry C, 2010, 114, 16776-16784.	1.5	21
186	New Double-Band-Electrode Channel Flow Differential Electrochemical Mass Spectrometry Cell: Application for Detecting Product Formation during Methanol Electrooxidation. Analytical Chemistry, 2010, 82, 4319-4324.	3.2	44
187	Solvent Processable Tetraalkylammonium-Functionalized Polyethylene for Use as an Alkaline Anion Exchange Membrane. Macromolecules, 2010, 43, 7147-7150.	2.2	127
188	Fabrication and surface characterization of single crystal PtBi and PtPb (100) and (001) surfaces. Physical Chemistry Chemical Physics, 2010, 12, 12978.	1.3	13
189	Kinetic Stabilization of Ordered Intermetallic Phases as Fuel Cell Anode Materials. Journal of Physical Chemistry C, 2010, 114, 14929-14938.	1.5	20
190	PtPb nanoparticle electrocatalysts: control of activity through synthetic methods. Journal of Nanoparticle Research, 2009, 11, 965-980.	0.8	17
191	Methanol Electrooxidation on PtRu Bulk Alloys and Carbon-Supported PtRu Nanoparticle Catalysts: A Quantitative DEMS Study. Langmuir, 2009, 25, 7725-7735.	1.6	57
192	Dithienylcyclopentenes-Containing Transition Metal Bisterpyridine Complexes Directed toward Molecular Electronic Applications. Inorganic Chemistry, 2009, 48, 991-999.	1.9	51
193	Transition-Metal Tris-Bipyridines Containing Three Dithienylcyclopentenes: Synthesis, Photochromic, and Electrochromic Properties. Inorganic Chemistry, 2009, 48, 7080-7085.	1.9	45
194	Electrogenerated Chemiluminescence from PbS Quantum Dots. Nano Letters, 2009, 9, 789-793.	4.5	131
195	A Ring-Opening Metathesis Polymerization Route to Alkaline Anion Exchange Membranes: Development of Hydroxide-Conducting Thin Films from an Ammonium-Functionalized Monomer. Journal of the American Chemical Society, 2009, 131, 12888-12889.	6.6	220
196	Preventing Nonspecific Adsorption on Polymer Brush Covered Gold Electrodes Using a Modified ATRP Initiator. Biomacromolecules, 2009, 10, 2750-2758.	2.6	39
197	Synthesis of Intermetallic PtZn Nanoparticles by Reaction of Pt Nanoparticles with Zn Vapor and Their Application as Fuel Cell Catalysts. Chemistry of Materials, 2009, 21, 2661-2667.	3.2	91
198	PbSe Nanocrystal Excitonic Solar Cells. Nano Letters, 2009, 9, 3749-3755.	4.5	360

#	Article	IF	CITATIONS
199	Rotating Disk Electrode (RDE) Investigation of BH ₄ ^{â^'} and BH ₃ OH ^{â^'} Electro-oxidation at Pt and Au: Implications for BH ₄ ^{â^'} Fuel Cells. Journal of Physical Chemistry C, 2009, 113, 19700-19712.	1.5	134
200	Activating Pd by Morphology Tailoring for Oxygen Reduction. Journal of the American Chemical Society, 2009, 131, 602-608.	6.6	437
201	One-Pot Synthesis of Platinum-Based Nanoparticles Incorporated into Mesoporous Niobium Oxideâ~Carbon Composites for Fuel Cell Electrodes. Journal of the American Chemical Society, 2009, 131, 9389-9395.	6.6	122
202	Surface characterization of ordered intermetallic PtBi(001) surfaces by ultra-high vacuum–electrochemistry (UHV–EC). Surface Science, 2008, 602, 1830-1836.	0.8	10
203	Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study. Physical Chemistry Chemical Physics, 2008, 10, 3739.	1.3	64
204	5,5â€~-Bis(methylthio)-2,2â€~-bithiophene:  A Potential Cathode Electroactive Material for Energy Storage Devices. Journal of Physical Chemistry C, 2008, 112, 3989-3997.	1.5	34
205	Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles. ACS Nano, 2008, 2, 2206-2212.	7.3	551
206	Operating mechanism of light-emitting electrochemical cells. Nature Materials, 2008, 7, 168-168.	13.3	49
207	Tunnelling spectra of individual magnetic endofullerene molecules. Nature Materials, 2008, 7, 884-889.	13.3	102
208	Batteries and electrochemical capacitors. Physics Today, 2008, 61, 43-47.	0.3	187
209	Electron Transfer through Molecules and Assemblies at Electrode Surfaces. Chemical Reviews, 2008, 108, 2721-2736.	23.0	118
210	Electrocatalytic Performance of Fuel Oxidation by Pt ₃ Ti Nanoparticles. Journal of the American Chemical Society, 2008, 130, 5452-5458.	6.6	157
211	Getter sputtering system for high-throughput fabrication of composition spreads. Review of Scientific Instruments, 2007, 78, 072212.	0.6	31
212	Electrochemical Energy Generation and Storage. Fuel Cells and Lithium-Ion Batteries. Bulletin of the Chemical Society of Japan, 2007, 80, 1843-1855.	2.0	15
213	Spatial Distributions of Copper in Microbial Biofilms by Scanning Electrochemical Microscopy. Environmental Science & Technology, 2007, 41, 936-941.	4.6	55
214	Kinetic Studies for the Electrocatalytic Reduction of Bis(2-mercapto-1,3,4-thiadiazoyl)-5,5â€~-disulfide at a Poly(3,4-ethylenedioxythiophene) Film-Modified Electrode via Rotating-Disk Electrode Voltammetry. Journal of Physical Chemistry C, 2007, 111, 13129-13136.	1.5	18
215	Electronic Effects in CO Chemisorption on Ptâ^'Pb Intermetallic Surfaces:  A Theoretical Study. Journal of Physical Chemistry C, 2007, 111, 17357-17369.	1.5	19
216	Direct Observation of Electrocatalytic Synergy. Journal of the American Chemical Society, 2007, 129, 11033-11035.	6.6	72

#	Article	IF	CITATIONS
217	Dinuclear Transition-Metal Terpyridine Complexes with a Dithienylcyclo- pentene Bridge Directed toward Molecular Electronic Applications. Inorganic Chemistry, 2007, 46, 10470-10472.	1.9	74
218	Electroluminescent devices from ionic transition metal complexes. Journal of Materials Chemistry, 2007, 17, 2976-2988.	6.7	338
219	Observation of intermediate-range order in a nominally amorphous molecular semiconductor film. Journal of Materials Chemistry, 2007, 17, 1458-1461.	6.7	39
220	Synthesis, computational and electrochemical characterization of a family of functionalized dimercaptothiophenes for potential use as high-energy cathode materials for lithium/lithium-ion batteries. Journal of Materials Chemistry, 2007, 17, 4366.	6.7	24
221	In situ identification of a luminescence quencher in an organic light-emitting device. Journal of Materials Chemistry, 2007, 17, 76-81.	6.7	38
222	Tungsten based electrocatalyst for fuel cell applications. Electrochemistry Communications, 2007, 9, 2128-2132.	2.3	63
223	Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nature Materials, 2007, 6, 894-899.	13.3	275
224	Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Physical Chemistry Chemical Physics, 2007, 9, 49-77.	1.3	226
225	A high-throughput search for direct methanol fuel cell anode electrocatalysts of type PtxBiyPbz. Applied Surface Science, 2007, 254, 653-661.	3.1	26
226	Poly[dithio-2,5-(1,3,4-thiadiazole)] (PDMcT)–poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high-energy lithium/lithium-ion rechargeable batteries. Journal of Power Sources, 2007, 173, 522-530.	4.0	49
227	Synthesis, Characterization, and Electrocatalytic Activity of PtPb Nanoparticles Prepared by Two Synthetic Approaches. Langmuir, 2006, 22, 10465-10471.	1.6	86
228	High throughput screening of electrocatalysts for fuel cell applications. Review of Scientific Instruments, 2006, 77, 054104.	0.6	59
229	Elucidation of the Redox Behavior of 2,5-Dimercapto-1,3,4-thiadiazole (DMcT) at Poly(3,4-ethylenedioxythiophene) (PEDOT)-Modified Electrodes and Application of the DMcTâ^'PEDOT Composite Cathodes to Lithium/Lithium Ion Batteries. Langmuir, 2006, 22, 10554-10563.	1.6	48
230	Intermetallic PtPb Nanoparticles Prepared by Sodium Naphthalide Reduction of Metal-Organic Precursors:  Electrocatalytic Oxidation of Formic Acid. Chemistry of Materials, 2006, 18, 5591-5596.	3.2	111
231	Synthesis, Characterization, and Electrocatalytic Activity of PtBi and PtPb Nanoparticles Prepared by Borohydride Reduction in Methanol. Chemistry of Materials, 2006, 18, 3365-3372.	3.2	174
232	Ruthenium Molecular Wires with Conjugated Bridging Ligands:Â Onset of Band Formation in Linear Inorganic Conjugated Oligomers. Journal of the American Chemical Society, 2006, 128, 1513-1522.	6.6	77
233	Identification of a Quenching Species in Ruthenium Tris-Bipyridine Electroluminescent Devices. Journal of the American Chemical Society, 2006, 128, 7761-7764.	6.6	104
234	Observation of Electroluminescence and Photovoltaic Response in Ionic Junctions. Science, 2006, 313, 1416-1419.	6.0	81

#	Article	IF	CITATIONS
235	Stepwise Self-Assembly of Ordered Supramolecular Assemblies Based on Coordination Chemistry. Langmuir, 2006, 22, 2082-2089.	1.6	31
236	Dinitrophenyl ligand substrates and their application to immunosensors. Biosensors and Bioelectronics, 2006, 22, 63-70.	5.3	15
237	Assessing the Impact of Denitrifier-Produced Nitric Oxide on Other Bacteria. Applied and Environmental Microbiology, 2006, 72, 2200-2205.	1.4	40
238	Direct 120V, 60Hz operation of an organic light emitting device. Journal of Applied Physics, 2006, 99, 074502.	1.1	46
239	Fabrication and preliminary testing of a planar membraneless microchannel fuel cell. Journal of Power Sources, 2005, 139, 96-105.	4.0	164
240	Adsorption of CO on PtBi2 and PtBi surfaces. Surface Science, 2005, 574, 1-16.	0.8	59
241	Electrochemical DNA sensing based on gold nanoparticle amplification. Analytical and Bioanalytical Chemistry, 2005, 381, 833-838.	1.9	37
242	Determination of Spatial Distributions of Zinc and Active Biomass in Microbial Biofilms by Two-Photon Laser Scanning Microscopy. Applied and Environmental Microbiology, 2005, 71, 4014-4021.	1.4	50
243	5-Hydroxytryptophan as a Precursor of a Catalyst for the Oxidation of NADH. Analytical Chemistry, 2005, 77, 2624-2631.	3.2	18
244	Addition of a Phosphorescent Dopant in Electroluminescent Devices from Ionic Transition Metal Complexes. Chemistry of Materials, 2005, 17, 6114-6116.	3.2	93
245	A Dual Electrolyte H2/O2 Planar Membraneless Microchannel Fuel Cell System with Open Circuit Potentials in Excess of 1.4 V. Langmuir, 2005, 21, 3544-3550.	1.6	133
246	Synthesis, Characterization, and Electrocatalytic Activity of PtBi Nanoparticles Prepared by the Polyol Process. Chemistry of Materials, 2005, 17, 5871-5876.	3.2	109
247	Temperature dependence of tris(2,2′-bipyridine) ruthenium (II) device characteristics. Journal of Applied Physics, 2004, 95, 4381-4384.	1.1	12
248	Organic light-emitting devices with laminated top contacts. Applied Physics Letters, 2004, 84, 3675-3677.	1.5	57
249	Degradation of Ru(bpy)32+-based OLEDs. Materials Research Society Symposia Proceedings, 2004, 846, DD11.11.1.	0.1	0
250	Peer Reviewed: Redox and Photoactive Dendrimers in Solution and on Surfaces. Analytical Chemistry, 2004, 76, 310 A-319 A.	3.2	27
251	Determination of solvation numbers of [Rull(bpy)3] and [Rull(tpy)2] functionalized-PAMAM dendrimers adsorbed onto platinum electrode surfaces. Journal of Electroanalytical Chemistry, 2004, 567, 249-256.	1.9	11
252	Interactions between DNA and a water-soluble C60 derivative studied by surface-based electrochemical methods. Journal of Electroanalytical Chemistry, 2004, 567, 339-349.	1.9	26

#	Article	IF	CITATIONS
253	Cascaded light-emitting devices based on a ruthenium complex. Applied Physics Letters, 2004, 84, 4980-4982.	1.5	33
254	Contact issues in electroluminescent devices from ruthenium complexes. Applied Physics Letters, 2004, 84, 807-809.	1.5	50
255	Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications. Journal of the American Chemical Society, 2004, 126, 4043-4049.	6.6	485
256	Wiring up single molecules. Thin Solid Films, 2003, 438-439, 457-461.	0.8	43
257	Electrocatalytic Oxidation of Formic Acid at an Ordered Intermetallic PtBi Surface. ChemPhysChem, 2003, 4, 193-199.	1.0	174
258	Direct electrochemistry of cytochrome c surface-confined on DNA-modified gold electrodes. Journal of Electroanalytical Chemistry, 2003, 544, 93-100.	1.9	49
259	Electrochemistry within molecules using ultrafast cyclic voltammetry. Comptes Rendus Chimie, 2003, 6, 99-115.	0.2	52
260	Zeptomole Voltammetric Detection and Electron-Transfer Rate Measurements Using Platinum Electrodes of Nanometer Dimensions. Analytical Chemistry, 2003, 75, 3962-3971.	3.2	178
261	Detailed Study ofN-(3-Pyrrol-1-yl-propyl)-4,4â€ [~] -bipyridinium (PPB) Electropolymerization. Langmuir, 2003, 19, 5402-5406.	1.6	5
262	Electroluminescence in Ruthenium(II) Dendrimersâ€. Journal of Physical Chemistry A, 2003, 107, 8130-8133.	1.1	57
263	Iron(II) and Copper(I) Coordination Polymers:  Electrochromic Materials with and without Chiroptical Properties. Inorganic Chemistry, 2003, 42, 4389-4393.	1.9	77
264	Quenching Dynamics of the Photoluminescence of [Ru(bpy)3]2+-Pendant PAMAM Dendrimers by Nitro Aromatics and Other Materials. Macromolecules, 2003, 36, 1272-1278.	2.2	42
265	SMOKE Studies of Electrodeposited Mono- and Multilayers. Langmuir, 2003, 19, 4309-4315.	1.6	7
266	Photophysics and Redox Behavior of Chiral Transition Metal Polymers. Inorganic Chemistry, 2003, 42, 1448-1455.	1.9	42
267	Solid-state electroluminescent devices based on transition metal complexes. Chemical Communications, 2003, , 2392-2399.	2.2	324
268	Development of a versatile SMOKE system with electrochemical applications. Review of Scientific Instruments, 2002, 73, 3018-3021.	0.6	4
269	Probing Diffusional Transport in Redox-Active Dendrimers. Journal of Physical Chemistry B, 2002, 106, 8504-8513.	1.2	38
270	Electroluminescence in Ruthenium(II) Complexes. Journal of the American Chemical Society, 2002, 124, 13624-13628.	6.6	181

#	Article	IF	CITATIONS
271	Photophysics of PAMAM-Based Dendrimers of Polypyridyl Complexes of Ruthenium. Journal of Physical Chemistry B, 2002, 106, 9993-10003.	1.2	14
272	Study of Specific Binding of Maltose Binding Protein to Pyrrole-Derived Bipyridinium Film by Quartz Crystal Microbalance. Langmuir, 2002, 18, 4892-4897.	1.6	7
273	Redox Induced Reversible Structural Transformations of Dimeric and Polymeric Phenanthroline-Based Copper Chelates. Inorganic Chemistry, 2002, 41, 765-772.	1.9	18
274	Coulomb blockade and the Kondo effect in single-atom transistors. Nature, 2002, 417, 722-725.	13.7	1,902
275	Enantiomerically Pure Chiral Coordination Polymers:Â Synthesis, Spectroscopy, and Electrochemistry in Solution and on Surfaces. Journal of the American Chemical Society, 2001, 123, 10265-10271.	6.6	94
276	Electrochemical and Adsorption Properties of PAMAM Dendrimers Surface-Functionalized with Polypyridyl Cobalt Complexes. Journal of Physical Chemistry B, 2001, 105, 2404-2411.	1.2	25
277	Redox Active Ordered Arrays via Metal Initiated Self-Assembly of Terpyridine Based Ligands. Journal of Physical Chemistry B, 2001, 105, 8746-8754.	1.2	48
278	Lithographic Applications of Redox Probe Microscopy. Langmuir, 2001, 17, 5932-5938.	1.6	23
279	Ultrafast Voltammetry of Adsorbed Redox Active Dendrimers with Nanometric Resolution: An Electrochemical Microtome. ChemPhysChem, 2001, 2, 130-134.	1.0	87
280	Cobaltocenium-Functionalized Poly(propylene imine) Dendrimers: Redox and Electromicrogravimetric Studies and AFM Imaging. Chemistry - A European Journal, 2001, 7, 1109-1117.	1.7	43
281	Precise Adjustment of Nanometric-Scale Diffusion Layers within a Redox Dendrimer Molecule by Ultrafast Cyclic Voltammetry: An Electrochemical Nanometric Microtome. Chemistry - A European Journal, 2001, 7, 2206-2226.	1.7	127
282	Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials. Chemical Reviews, 2001, 101, 1897-1930.	23.0	825
283	Anion Effects and Induced Adsorption of Chloride by Submonolayer Amounts of Copper on Deliberately Stepped Platinum Surfaces. Journal of Physical Chemistry B, 2000, 104, 5932-5939.	1.2	15
284	Interactions of Benzyl Viologen with Surface-Bound Single- and Double-Stranded DNA. Analytical Chemistry, 2000, 72, 4700-4706.	3.2	64
285	Poison Formation upon the Dissociative Adsorption of Formic Acid on Bismuth-Modified Stepped Platinum Electrodes. Langmuir, 2000, 16, 787-794.	1.6	38
286	X-ray and electrochemical studies of Cu upd on single crystal electrodes in the presence of bromide: comparison between Au(111) and Pt(111) electrodes. Journal of Electroanalytical Chemistry, 1999, 461, 121-130.	1.9	27
287	Structural effects on the oxidation of HCOOH by bismuth modified Pt(111) electrodes with (110) monatomic steps. Journal of Electroanalytical Chemistry, 1999, 467, 43-49.	1.9	52
288	Multimetallic, double-stranded helical complexes derived from hexa(n-propylthio)novipyridine: synthesis, structure and redox properties. Inorganica Chimica Acta, 1999, 288, 189-199.	1.2	11

#	Article	IF	CITATIONS
289	Electrochemical, in-situ surface EXAFS and CTR studies of Co monolayers irreversibly adsorbed onto Pt(111). Electrochimica Acta, 1999, 44, 2385-2396.	2.6	25
290	Synthesis, Characterization, Electrochemistry, and EQCM Studies of Polyamidoamine Dendrimers Surface-Functionalized with Polypyridyl Metal Complexes. Langmuir, 1999, 15, 872-884.	1.6	90
291	Ordered Arrays Generated via Metal-Initiated Self-Assembly of Terpyridine Containing Dendrimers and Bridging Ligands. Langmuir, 1999, 15, 7351-7354.	1.6	64
292	Thermodynamics and Kinetics of Adsorption of Poly(amido amine) Dendrimers Surface Functionalized with Ruthenium(II) Complexes. Langmuir, 1999, 15, 7333-7339.	1.6	40
293	Electrochemically Triggered Reaction of a Surface-Confined Reagent:  Mechanistic and EQCM Characterization of Redox-Active Self-Assembling Monolayers Derived from 5,5â€ ⁻ -Dithiobis(2-nitrobenzoic acid) and Related Materials. Langmuir, 1999, 15, 127-134.	1.6	37
294	The Co-Adsorption of UPD Copper and Irreversibly Adsorbed Bismuth on Pt(111) and Pt(100) Electrodes. Journal of Physical Chemistry B, 1999, 103, 6764-6769.	1.2	16
295	Catechol-Pendant Terpyridine Complexes:  Electrodeposition Studies and Electrocatalysis of NADH Oxidation. Inorganic Chemistry, 1999, 38, 559-565.	1.9	36
296	Structural Effects on the Oxidation of HCOOH by Bismuth-Modified Pt(111) Electrodes with (100) Monatomic Steps. Langmuir, 1999, 15, 7325-7332.	1.6	65
297	Electrocatalytic Reduction ofS-Nitrosoglutathione at Electrodes Modified with an Electropolymerized Film of a Pyrrole-Derived Viologen System and Their Application to CellularS-Nitrosoglutathione Determinations. Analytical Biochemistry, 1998, 263, 102-112.	1.1	6
298	The effects of anions on the underpotential deposition of Hg on Au(111) An electrochemical and in situ surface X-ray diffraction study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134, 113-131.	2.3	17
299	EQCM Studies of the Redox Processes during and after Electropolymerization of Films of Transition-Metal Complexes of Vinylterpyridine. Journal of Physical Chemistry B, 1998, 102, 1387-1396.	1.2	34
300	Effects of Dendrimer Generation on Site Isolation of Core Moieties:Â Electrochemical and Fluorescence Quenching Studies with Metalloporphyrin Core Dendrimers. Chemistry of Materials, 1998, 10, 30-38.	3.2	180
301	Effects of the Electrolyte Identity and the Presence of Anions on the Redox Behavior of Irreversibly Adsorbed Bismuth on Pt(111). Journal of Physical Chemistry B, 1998, 102, 3506-3511.	1.2	39
302	X-ray and Electrochemical Studies of Cu UPD on Au(111) Single-Crystal Electrodes in the Presence of Bromide. Journal of Physical Chemistry B, 1998, 102, 9825-9833.	1.2	25
303	Micromethod for the Investigation of the Interactions between DNA and Redox-Active Molecules. Analytical Chemistry, 1998, 70, 3162-3169.	3.2	263
304	Coadsorption of Sulfate/Bisulfate Anions with Hg Cations during Hg Underpotential Deposition on Au(111):Â An in Situ X-ray Diffraction Study. Journal of Physical Chemistry B, 1997, 101, 244-252.	1.2	29
305	Redox-Active Ferrocenyl Dendrimers:  Thermodynamics and Kinetics of Adsorption, In-Situ Electrochemical Quartz Crystal Microbalance Study of the Redox Process and Tapping Mode AFM Imaging. Journal of the American Chemical Society, 1997, 119, 10763-10773.	6.6	201
306	Reactions of Phospholipase A2at a Mercury Electrode Surface. Journal of Physical Chemistry B, 1997, 101, 167-174.	1.2	6

#	Article	IF	CITATIONS
307	Time-Resolved Surface X-ray Scattering Study of Surface Ordering of Electrodeposited Layers. Journal of the American Chemical Society, 1997, 119, 11703-11704.	6.6	14
308	Phases of Underpotentially Deposited Hg on Au(111):  An in Situ Surface X-ray Diffraction Study. Journal of Physical Chemistry B, 1997, 101, 2907-2916.	1.2	31
309	Induced adsorption of sulfate/bisulfate anions by submonolayer amounts of copper on deliberately stepped Pt surfaces. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3757-3762.	1.7	47
310	Electrochemically Controlled Adhesion in Atomic Force Spectroscopy. Journal of the American Chemical Society, 1996, 118, 6303-6304.	6.6	48
311	STM and ECSTM Study of the Formation and Structure of Self-Assembling Osmium Complexes on Pt(111). The Journal of Physical Chemistry, 1996, 100, 1036-1042.	2.9	36
312	Synthesis and Characterization of Redox-Active Metal Complexes Sequentially Self-Assembled onto Gold Electrodes via a New Thiolâ^'Terpyridine Ligand. Langmuir, 1996, 12, 4455-4462.	1.6	136
313	Adsorption-desorption processes of redox-active osmium thiol monolayers. Journal of Electroanalytical Chemistry, 1996, 408, 199-211.	1.9	22
314	Exchange Dynamics of Redox-Active Self-Assembling Mixed Monolayers. The Journal of Physical Chemistry, 1996, 100, 4556-4563.	2.9	30
315	In Situ Quartz Crystal Microbalance Study of Self-Assembly and Mass Transfer Processes of a Redox-Active Osmium Complex. The Journal of Physical Chemistry, 1996, 100, 17909-17914.	2.9	9
316	Adsorption Dynamics of a Phospholipase A2 onto a Mercury Electrode Surface. The Journal of Physical Chemistry, 1995, 99, 17235-17243.	2.9	6
317	Scanning Tunneling Microscopy of Molecular Adsorbates. Comments on Inorganic Chemistry, 1994, 15, 171-196.	3.0	3
318	Ab-Initio XAFS Calculations and in-Situ XAFS Measurements of Copper Underpotential Deposition on Pt(111): A Comparative Study. The Journal of Physical Chemistry, 1994, 98, 6552-6558.	2.9	21
319	Adsorption Dynamics of Electroactive Self-Assembling Molecules. Langmuir, 1994, 10, 1971-1979.	1.6	61
320	Thermodynamics of Adsorption of Redox-Active Self-Assembling Monolayers of Transition-Metal Complexes. Langmuir, 1994, 10, 1300-1305.	1.6	55
321	Monomeric and oligomeric complexes of ruthenium and osmium with tetra-2-pyridyl-1,4-pyrazine (TPPZ). Inorganic Chemistry, 1993, 32, 194-203.	1.9	130
322	Metal ion-induced self-assembly of functionalized 2,6-oligopyridines. 2. Copper-containing double-stranded helicates derived from functionalized quaterpyridine and quinquepyridine: redox state-induced transformations and electron communication in mixed-valence systems. Inorganic	1.9	134
323	Chemistry, 1993, 32, 4422-4435. Metal ion-induced self-assembly of functionalized 2,6-oligopyridines. 4. Metal-metal interaction in double-stranded, dicuprous helicates derived from terpyridine derivatives. Inorganic Chemistry, 1993, 32, 4450-4456.	1.9	94
324	Metal ion-induced self-assembly of functionalized 2,6-oligopyridines. 3. Metal-metal interaction and redox state-induced transformations in double-stranded helicates derived from functionalized quinquepyridine and sexipyridine. Inorganic Chemistry, 1993, 32, 4436-4449.	1.9	98

#	Article	IF	CITATIONS
325	Di-, tri-, and tetrametallic double-stranded helical complexes derived from alkylthio-substituted septipyridines: synthesis, structure, and redox properties. Inorganic Chemistry, 1993, 32, 5477-5484.	1.9	60
326	In situ x-ray absorption spectroscopy studies of copper underpotentially deposited in the absence and presence of chloride on platinum (111). Langmuir, 1993, 9, 2460-2469.	1.6	56
327	In-situ x-ray studies of the underpotential deposition of copper on platinum(111). The Journal of Physical Chemistry, 1993, 97, 6278-6288.	2.9	56
328	Determination of silver with polymer-modified electrodes. Journal of Electroanalytical Chemistry, 1992, 328, 111-125.	1.9	24
329	Construction of submicrometer voltammetric electrodes. Analytical Chemistry, 1990, 62, 782-784.	3.2	87
330	Determination of copper at electrodes modified with ligands of varying coordination strength: a preamble to speciation studies. Analytical Chemistry, 1990, 62, 274-278.	3.2	50
331	Electroanalysis of aromatic aldehydes with modified carbon paste electrodes. Analytical Chemistry, 1989, 61, 2599-2602.	3.2	23
332	Electroanalysis with modified carbon paste electrodes coordination trends, selectivity and sensitivity. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 242, 87-96.	0.3	31
333	Coordination chemistry in two dimensions: chemically modified electrodes. Coordination Chemistry Reviews, 1988, 86, 135-189.	9.5	297
334	Polymer-modified microelectrodes for metal ion determination and the development of a calcium amperometric probe based on surface-immobilized Antipyrylazo III. Analytical Chemistry, 1988, 60, 254-258.	3.2	34
335	Conductivity Studies of Metal Coordination Polymers of Cobalt, Iron, Ruthenium, and Osmium Vinylbipyridine Complexes. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1988, 160, 377-388.	0.3	1
336	Synthesis and Photoelectrochemistry of Polycrystalline Thin Films of p â€â€‰WSe2, p â€â€‰â€‰WS Journal of the Electrochemical Society, 1988, 135, 1436-1442.	2, ar 1.3	nd pậ€‰â€ât
337	4-Vinyl-, 6-vinyl-, and 4'-vinyl-2,2':6',2"-terpyridinyl ligands: their synthesis and the electrochemistry of their transition-metal coordination complexes. Journal of the American Chemical Society, 1987, 109, 3961-3967.	6.6	185
338	Transport properties of liquid crystal doped films of polyvinylferrocene. Electrochimica Acta, 1987, 32, 319-323.	2.6	5
339	Synthesis, surface characterization and photoelectrochemical studies of polycrystalline thin films of p-WSe2 with added Ca and Mg. Solar Energy Materials and Solar Cells, 1987, 15, 277-291.	0.4	8
340	Electrochemical and mechanistic studies of Re(CO)3(dmbpy)CI] and their relation to the catalytic reduction of CO2. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 201, 347-358.	0.3	98
341	Electrocatalysis of CO2 reduction at surface modified metallic and semiconducting electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 209, 101-107.	0.3	122
342	Organic Electroanalysis with Chemically Modified Electrodes. Analytical Letters, 1986, 19, 1613-1632.	1.0	13

#	Article	IF	CITATIONS
343	Blocking of recombination sites and photoassisted hydrogen evolution at surface-modified polycrystalline thin films of p-tungsten diselenide. The Journal of Physical Chemistry, 1985, 89, 1279-1285.	2.9	18
344	Spectral, electrochemical and electrocatalytic properties of 1,10-phenanthroline-5,6-dione complexes of transition metals. Inorganic Chemistry, 1985, 24, 4263-4267.	1.9	192
345	Electroanalysis with chemically modified electrodes. Analytical Chemistry, 1985, 57, 142-149.	3.2	194
346	Multiple-use polymer-modified electrodes for electroanalysis of metal ions in solution. Analytical Chemistry, 1985, 57, 2009-2011.	3.2	54
347	Improved synthesis of 4-vinyl-4'-methyl-2,2'-bipyridine. Inorganic Chemistry, 1985, 24, 987-988.	1.9	41
348	Electrogenerated chemiluminescence of bipyridine and phenanthroline complexes of osmium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 175, 321-326.	0.3	42
349	Transfer of Solution Reactivity Properties to Electrode Surfaces. ACS Symposium Series, 1982, , 133-158.	0.5	3
350	Semiconductor Electrodes. 44. Photoelectrochemistry at Polycrystalline pâ€Type WSe2 Films. Journal of the Electrochemical Society, 1982, 129, 673-675.	1.3	42
351	Semiconductor Electrodes: XLI . Improvement of Performance of Electrodes by Electrochemical Polymerization of oâ€Phenylenediamine at Surface Imperfections. Journal of the Electrochemical Society, 1982, 129, 265-271.	1.3	65
352	Electrogenerated chemiluminescence. 40. A chemiluminescent polymer based on the tris(4-vinyl-4'-methyl-2,2'-bipyridyl)ruthenium(II) system. Journal of the American Chemical Society, 1982, 104, 2641-2642.	6.6	99
353	Semiconductor electrodes. 40. Photoassisted hydrogen evolution at poly(benzyl viologen)-coated p-type silicon electrodes. Journal of the American Chemical Society, 1981, 103, 6898-6901.	6.6	88
354	Can chemical reactivity patterns on chemically modified electrode surfaces be anticipated from solution reactivity? A study of ruthenium nitro complexes. Journal of the American Chemical Society, 1980, 102, 3272-3274.	6.6	50
355	Oxidation of the ligand in nitro complexes of ruthenium(III). Inorganic Chemistry, 1980, 19, 1896-1903.	1.9	65