Premendra D Dwivedi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11687754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Safety assessment of food derived from genetically modified crops. , 2020, , 655-673.		0
2	Identification and characterization of major IgE binding of purified allergenic protein (11†kDa) from Buchanania lanzan. Food Research International, 2019, 125, 108640.	6.2	3
3	Inherent allergic potential of α-dioxygenase fragment: A pathogenesis related protein. Immunobiology, 2019, 224, 207-219.	1.9	1
4	A Comprehensive Review on Mustard-Induced Allergy and Implications for Human Health. Clinical Reviews in Allergy and Immunology, 2019, 57, 39-54.	6.5	20
5	Maillard reaction in food allergy: Pros and cons. Critical Reviews in Food Science and Nutrition, 2018, 58, 208-226.	10.3	99
6	A novel function of TLR4 in mediating the immunomodulatory effect of Benzanthrone, an environmental pollutant. Toxicology Letters, 2017, 276, 69-84.	0.8	7
7	Glycation of clinically relevant chickpea allergen attenuates its allergic immune response in Balb/c mice. Food Chemistry, 2017, 235, 244-256.	8.2	18
8	Pathophysiology of IL-33 and IL-17 in allergic disorders. Cytokine and Growth Factor Reviews, 2017, 38, 22-36.	7.2	42
9	Health Risks and Benefits of Chickpea (<i>Cicer arietinum</i>) Consumption. Journal of Agricultural and Food Chemistry, 2017, 65, 6-22.	5.2	78
10	Cutaneous exposure to clinically-relevant pigeon pea (Cajanus cajan) proteins promote TH2-dependent sensitization and IgE-mediated anaphylaxis in Balb/c mice. Journal of Immunotoxicology, 2016, 13, 827-841.	1.7	4
11	Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes. International Journal of Cancer, 2016, 139, 2033-2046.	5.1	22
12	Purification, characterization and allergenicity assessment of 26 kDa protein, a major allergen from Cicer arietinum. Molecular Immunology, 2016, 74, 113-124.	2.2	7
13	Benzanthrone induced immunotoxicity via oxidative stress and inflammatory mediators in Balb/c mice. Immunobiology, 2015, 220, 369-381.	1.9	16
14	Toxicological mode of action of ZnO nanoparticles: Impact on immune cells. Molecular Immunology, 2015, 63, 184-192.	2.2	47
15	Recent Advancements in the Therapeutics of Food Allergy. Recent Patents on Food, Nutrition & Agriculture, 2014, 5, 188-200.	0.9	0
16	ZnO nanoparticles induced adjuvant effect via toll-like receptors and Src signaling in Balb/c mice. Toxicology Letters, 2014, 230, 421-433.	0.8	40
17	EGFRâ€mediated Akt and MAPKs signal pathways play a crucial role in patulinâ€induced cell proliferation in primary murine keratinocytes via modulation of <i>Cyclin D1</i> and <i>COXâ€2</i> expression. Molecular Carcinogenesis, 2014, 53, 988-998.	2.7	20
18	Elucidation of immediate type I reactions in native and GM mustard (Brassica spp.). Food Research International, 2014, 64, 810-821.	6.2	6

#	Article	IF	CITATIONS
19	Safety Assessment of Food Derived from Genetically Modified Crops. , 2014, , 509-524.		Ο
20	Leucoagglutinating phytohemagglutinin: purification, characterization, proteolytic digestion and assessment for allergenicity potential in BALB/c mice. Immunopharmacology and Immunotoxicology, 2014, 36, 138-144.	2.4	17
21	Phaseolin: A 47.5kDa protein of red kidney bean (Phaseolus vulgaris L.) plays a pivotal role in hypersensitivity induction. International Immunopharmacology, 2014, 19, 178-190.	3.8	9
22	Peptide based immunotherapy: A pivotal tool for allergy treatment. International Immunopharmacology, 2014, 19, 391-398.	3.8	20
23	Hypersensitivity linked to exposure of broad bean protein(s) in allergic patients and BALB/c mice. Nutrition, 2014, 30, 903-914.	2.4	8
24	Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicology Letters, 2014, 227, 29-40.	0.8	178
25	Interactive threats of nanoparticles to the biological system. Immunology Letters, 2014, 158, 79-87.	2.5	79
26	Role of oxidative stress in Deoxynivalenol induced toxicity. Food and Chemical Toxicology, 2014, 72, 20-29.	3.6	125
27	Tollâ€like receptor 6 mediated inflammatory and functional responses of zinc oxide nanoparticles primed macrophages. Immunology, 2014, 142, 453-464.	4.4	50
28	Allergic manifestation by black gram (Vigna mungo) proteins in allergic patients, BALB/c mice and RBL-2H3 cells. International Immunopharmacology, 2014, 23, 92-103.	3.8	10
29	Influence of temperature and pH on the degradation of deoxynivalenol (DON) in aqueous medium: comparative cytotoxicity of DON and degraded product. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 121-131.	2.3	42
30	Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice. International Immunology, 2014, 26, 159-172.	4.0	68
31	Phagocytic cells internalize ZnO particles by FcγII/III-receptor pathway. Immunobiology, 2014, 219, 746-755.	1.9	1
32	Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway. Toxicology and Applied Pharmacology, 2014, 279, 186-197.	2.8	57
33	Allergenic responses of green gram (Vigna radiata L. Millsp) proteins can be vitiated by induction of oral tolerance due to single acute dose in BALB/c mice. Food Research International, 2014, 57, 130-141.	6.2	6
34	A Comprehensive Review of Legume Allergy. Clinical Reviews in Allergy and Immunology, 2013, 45, 30-46.	6.5	132
35	Macrophages in food allergy: An enigma. Molecular Immunology, 2013, 56, 612-618.	2.2	17
36	Occurrence of deoxynivalenol in cereals and exposure risk assessment in Indian population. Food Control, 2013, 30, 549-555.	5.5	60

#	Article	IF	CITATIONS
37	Allergenicity potential of red kidney bean (Phaseolus vulgaris L.) proteins in orally treated BALB/c mice and passively sensitized RBL-2H3 cells. Cellular Immunology, 2013, 284, 37-44.	3.0	13
38	Clinical complications of kidney bean (Phaseolus vulgaris L.) consumption. Nutrition, 2013, 29, 821-827.	2.4	65
39	Phytohemagglutinins augment red kidney bean (Phaseolus vulgaris L.) induced allergic manifestations. Journal of Proteomics, 2013, 93, 50-64.	2.4	27
40	A molecular insight of CTLA-4 in food allergy. Immunology Letters, 2013, 149, 101-109.	2.5	13
41	Allergenic Diversity among Plant and Animal Food Proteins. Food Reviews International, 2012, 28, 277-298.	8.4	24
42	Impact of Thermal Processing on Legume Allergens. Plant Foods for Human Nutrition, 2012, 67, 430-441.	3.2	54
43	Chickpea (Cicer arietinum) proteins induce allergic responses in nasobronchial allergic patients and BALB/c mice. Toxicology Letters, 2012, 210, 24-33.	0.8	32
44	Molecular mechanisms of IgE mediated food allergy. International Immunopharmacology, 2012, 13, 432-439.	3.8	83
45	Topical Application of Ochratoxin A Causes DNA Damage and Tumor Initiation in Mouse Skin. PLoS ONE, 2012, 7, e47280.	2.5	42
46	Allergenic responses of red kidney bean (Phaseolus vulgaris cv chitra) polypeptides in BALB/c mice recognized by bronchial asthma and allergic rhinitis patients. Food Research International, 2011, 44, 2868-2879.	6.2	27
47	Role of mitogen activated protein kinases in skin tumorigenicity of Patulin. Toxicology and Applied Pharmacology, 2011, 257, 264-271.	2.8	46
48	Citrinin-Generated Reactive Oxygen Species Cause Cell Cycle Arrest Leading to Apoptosis via the Intrinsic Mitochondrial Pathway in Mouse Skin. Toxicological Sciences, 2011, 122, 557-566.	3.1	68
49	Cytotoxicity and Uptake of Zinc Oxide Nanoparticles Leading to Enhanced Inflammatory Cytokines Levels in Murine Macrophages: Comparison with Bulk Zinc Oxide. Journal of Biomedical Nanotechnology, 2011, 7, 110-111.	1.1	51
50	Partial characterization of red gram (Cajanus cajan L. Millsp) polypeptides recognized by patients exhibiting rhinitis and bronchial asthma. Food and Chemical Toxicology, 2010, 48, 2725-2736.	3.6	33
51	Probing novel allergenic proteins of commonly consumed legumes. Immunopharmacology and Immunotoxicology, 2009, 31, 186-194.	2.4	21
52	Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p21/WAF1 proteins in skin of mice. Toxicology and Applied Pharmacology, 2009, 234, 192-201.	2.8	75
53	Patulin in apple juices: Incidence and likely intake in an Indian population. Food Additives and Contaminants: Part B Surveillance, 2008, 1, 140-146.	2.8	32
54	Prevalence of Legume Sensitization in Patients with Naso-Bronchial Allergy. Immunopharmacology and Immunotoxicology, 2008, 30, 529-542.	2.4	16