
Fangyuan Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11687611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scanning Kelvin Probe Microscopy Reveals That Ion Motion Varies with Dimensionality in 2D Halide Perovskites. ACS Energy Letters, 2021, 6, 100-108.	17.4	23
2	Light-Dependent Impedance Spectra and Transient Photoconductivity in a Ruddlesden–Popper 2D Lead–Halide Perovskite Revealed by Electrical Scanned Probe Microscopy and Accompanying Theory. Journal of Physical Chemistry C, 2020, 124, 13639-13648.	3.1	12
3	Intralayer A-Site Compositional Engineering of Ruddlesden–Popper Perovskites for Thermostable and Efficient Solar Cells. ACS Energy Letters, 2019, 4, 1216-1224.	17.4	65
4	Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer. Nature Communications, 2019, 10, 878.	12.8	115
5	Highâ€Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics. Advanced Functional Materials, 2018, 28, 1705409.	14.9	84
6	Electrochemical Corrosion of Ag Electrode in the Silver Grid Electrodeâ€Based Flexible Perovskite Solar Cells and the Suppression Method. Solar Rrl, 2018, 2, 1800118.	5.8	37
7	Flexible large-area organic tandem solar cells with high defect tolerance and device yield. Journal of Materials Chemistry A, 2017, 5, 3186-3192.	10.3	51
8	An Amidineâ€Type nâ€Dopant for Solutionâ€Processed Fieldâ€Effect Transistors and Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1703254.	14.9	40
9	Dual functions of interface passivation and n-doping using 2,6-dimethoxypyridine for enhanced reproducibility and performance of planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 17632-17639.	10.3	25
10	Enhanced Thermochemical Stability of CH ₃ NH ₃ PbI ₃ Perovskite Films on Zinc Oxides via New Precursors and Surface Engineering. ACS Applied Materials & Interfaces, 2017, 9, 26045-26051.	8.0	29
11	Colorful flexible polymer tandem solar cells. Journal of Materials Chemistry C, 2017, 5, 7884-7889.	5.5	14
12	Free‣tanding Conducting Polymer Films for Highâ€Performance Energy Devices. Angewandte Chemie, 2016, 128, 991-994.	2.0	36
13	Synergistic Effect of Pbl ₂ Passivation and Chlorine Inclusion Yielding High Openâ€Circuit Voltage Exceeding 1.15 V in Both Mesoscopic and Inverted Planar CH3NH ₃ Pbl ₃ (Cl)â€Based Perovskite Solar Cells. Advanced Functional Materials, 2016. 26. 8119-8127.	14.9	93
14	Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 14017-14024.	10.3	53
15	Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating. Nano Letters, 2016, 16, 7829-7835.	9.1	123
16	Hierarchical Dualâ€Scaffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600484.	3.7	40
17	Nonreduction-Active Hole-Transporting Layers Enhancing Open-Circuit Voltage and Efficiency of Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 33899-33906.	8.0	40
18	Flexible all-solution-processed all-plastic multijunction solar cells for powering electronic devices. Materials Horizons, 2016, 3, 452-459.	12.2	73

FANGYUAN JIANG

#	Article	IF	CITATIONS
19	Freeâ€Standing Conducting Polymer Films for Highâ€Performance Energy Devices. Angewandte Chemie - International Edition, 2016, 55, 979-982.	13.8	138
20	A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A, 2016, 4, 1208-1213.	10.3	139
21	Reduction and oxidation of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) induced by methylamine (CH ₃ NH ₂)-containing atmosphere for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4305-4311.	10.3	44
22	Double-side responsive polymer near-infrared photodetectors with transfer-printed electrode. Journal of Materials Chemistry C, 2016, 4, 1414-1419.	5.5	43
23	Conductivity Enhancement of PEDOT:PSS Films via Phosphoric Acid Treatment for Flexible All-Plastic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14089-14094.	8.0	127
24	A nonionic surfactant simultaneously enhancing wetting property and electrical conductivity of PEDOT:PSS for vacuum-free organic solar cells. Solar Energy Materials and Solar Cells, 2015, 137, 311-318.	6.2	48
25	Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode. Optics Express, 2015, 23, A83.	3.4	53
26	Vacuum-free and metal electrode-free organic tandem solar cells. Applied Physics Letters, 2015, 106, .	3.3	17
27	Polyethylenimine Aqueous Solution: A Low-Cost and Environmentally Friendly Formulation to Produce Low-Work-Function Electrodes for Efficient Easy-to-Fabricate Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22628-22633.	8.0	41
28	PEDOT:PSS top electrode prepared by transfer lamination using plastic wrap as the transfer medium for organic solar cells. Organic Electronics, 2014, 15, 2593-2598.	2.6	33