
Jeremy J Webb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11686845/publications.pdf Version: 2024-02-01

IEDEMV I WERR

#	Article	IF	CITATIONS
1	Bayesian Inference of Globular Cluster Properties Using Distribution Functions. Astrophysical Journal, 2022, 926, 211.	4.5	2
2	The effect of dwarf galaxies on the tidal tails of globular clusters. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2437-2447.	4.4	7
3	The effects of $\hat{\mathbf{b}}$ CDM dark matter substructure on the orbital evolution of star clusters. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1932-1939.	4.4	4
4	Mass-loss from massive globular clusters in tidal fields. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3000-3009.	4.4	6
5	Variation in the stellar mass function along stellar streams. Monthly Notices of the Royal Astronomical Society, 2021, 510, 774-785.	4.4	4
6	Strong chemical tagging with APOGEE: 21 candidate star clusters that have dissolved across the Milky Way disc. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5101-5115.	4.4	25
7	The effects of dwarf galaxies on the orbital evolution of galactic globular clusters. Monthly Notices of the Royal Astronomical Society, 2020, 499, 804-813.	4.4	17
8	High-resolution simulations of dark matter subhalo disruption in a Milky-Way-like tidal field. Monthly Notices of the Royal Astronomical Society, 2020, 499, 116-128.	4.4	22
9	An extended Pal 5 stream in Gaia DR2. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4978-4986.	4.4	23
10	Searching for solar siblings in APOGEE and Gaia DR2 with N-body simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2268-2279.	4.4	10
11	The initial properties of young star clusters in M83. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1933-1939.	4.4	5
12	The evolution of kicked stellar-mass black holes in star cluster environments - II. Rotating star clusters. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3055-3066.	4.4	7
13	Characteristic radii of the Milky Way globular clusters. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4367-4377.	4.4	23
14	A systematic analysis of star cluster disruption by tidal shocks – I.ÂControlled N-body simulations and a new theoretical model. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5879-5894.	4.4	15
15	The orbital anisotropy profiles of nearby globular clusters from Gaia Data Release 2. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3693-3701.	4.4	26
16	Spatial mixing of binary stars in multiple-population globular clusters. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2592-2599.	4.4	15
17	Rediscovering the tidal tails of NGC 288 with <i>Gaia</i> DR2. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L114-L118.	3.3	11
18	Searching for the GD-1 stream progenitor in <i>Gaia</i> DR2 with direct <i>N</i> -body simulations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5929-5938.	4.4	28

JEREMY J WEBB

#	Article	IF	CITATIONS
19	Dynamical effects on the stellar mass function of multiple stellar populations in globular clusters. Proceedings of the International Astronomical Union, 2019, 14, 346-349.	0.0	0
20	Evolution of the stellar mass function in multiple-population globular clusters. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2731-2742.	4.4	19
21	The Structural and Kinematic Evolution of Central Star Clusters in Dwarf Galaxies and Their Dependence on Dark Matter Halo Profiles. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3708-3714.	4.4	9
22	The effect of stellar helium abundance on dynamics of multiple populations in globular clusters. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3027-3032.	4.4	7
23	The evolution of kicked stellar-mass black holes in star cluster environments. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3835-3846.	4.4	11
24	On the link between energy equipartition and radial variation in the stellar mass function of star clusters. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1977-1983.	4.4	25
25	The early evolution of star clusters in compressive and extensive tidal fields. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L92-L96.	3.3	8
26	Modelling the observed stellar mass function and its radial variation in galactic globular clusters. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3845-3855.	4.4	17
27	Radial variation in the stellar mass functions of star clusters. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2383-2393.	4.4	24
28	Globular cluster scale sizes in giant galaxies: orbital anisotropy and tidally underfilling clusters in M87, NGCÂ1399 and NGCÂ5128. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2129-2142.	4.4	6
29	The dynamical evolution of accreted star clusters in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2016, 456, 240-247.	4.4	16
30	The state of globular clusters at birth – II. Primordial binaries. Monthly Notices of the Royal Astronomical Society, 2015, 446, 226-239.	4.4	52
31	Back to the future: estimating initial globular cluster masses from their present-day stellar mass functions. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3279-3288.	4.4	66
32	The dynamics of multiple populations in the globular cluster NGC 6362. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2166-2172.	4.4	27
33	The effects of orbital inclination on the scale size and evolution of tidally filling star clusters. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1048-1055.	4.4	32
34	The size of star clusters accreted by the Milky Way. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2872-2877.	4.4	25
35	The effect of orbital eccentricity on the dynamical evolution of star clusters. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1569-1577.	4.4	43
36	The state of globular clusters at birth: emergence from the gas-embedded phase. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3399-3412.	4.4	31

JEREMY J WEBB

#	Article	IF	CITATIONS
37	GLOBULAR CLUSTER SCALE SIZES IN GIANT GALAXIES: THE CASE OF M87 AND THE ROLE OF ORBITAL ANISOTROPY AND TIDAL FILLING. Astrophysical Journal, 2013, 779, 94.	4.5	12
38	THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS. Astrophysical Journal, 2013, 764, 124.	4.5	48
39	THE OBSERVATIONAL AND THEORETICAL TIDAL RADII OF GLOBULAR CLUSTERS IN M87. Astrophysical Journal, 2012, 746, 93.	4.5	10
40	THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS. Astrophysical Journal Letters, 2012, 759, L39.	8.3	9
41	Modelling the Effects of Dark Matter Substructure on Globular Cluster Evolution with the Tidal Approximation. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	6