
Jerrold I Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11684341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multiâ€gene analyses, and a functional model for the origin of monocots. American Journal of Botany, 2018, 105, 1888-1910.	1.7	161
2	Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes. PLoS ONE, 2017, 12, e0177606.	2.5	36
3	Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytologist, 2016, 209, 855-870.	7.3	181
4	Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome. Genome Biology and Evolution, 2016, 8, 2176-2189.	2.5	26
5	Plastid phylogenomics and molecular evolution of Alismatales. Cladistics, 2016, 32, 160-178.	3.3	98
6	Drastic reduction of plastome size in the mycoheterotrophic Thismia tentaculata relative to that of its autotrophic relative Tacca chantrieri. American Journal of Botany, 2016, 103, 1129-1137.	1.7	33
7	A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales. Genome Biology and Evolution, 2016, 8, evw060.	2.5	117
8	Phylogeny of the Alismatales (Monocotyledons) and the relationship of <i><scp>A</scp>corus</i> (<scp>A</scp> corales?). Cladistics, 2016, 32, 141-159.	3.3	28
9	Resolving relationships within the palm subfamily Arecoideae (Arecaceae) using plastid sequences derived from nextâ€generation sequencing. American Journal of Botany, 2015, 102, 888-899.	1.7	31
10	Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes. AoB PLANTS, 2015, 7, plv046.	2.3	68
11	A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution, 2015, 53, 117-137.	3.1	431
12	Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)?. Annals of Botany, 2014, 113, 119-133.	2.9	84
13	Plastid genomes and deep relationships among the commelinid monocot angiosperms. Cladistics, 2013, 29, 65-87.	3.3	108
14	Phylogeny of the Liliales (Monocotyledons) with special emphasis on data partition congruence and RNA editing. Cladistics, 2013, 29, 274-295.	3.3	26
15	The plastid genome of the mycoheterotrophic <i>Corallorhiza striata</i> (Orchidaceae) is in the relatively early stages of degradation. American Journal of Botany, 2012, 99, 1513-1523.	1.7	154
16	Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. American Journal of Botany, 2012, 99, 875-889.	1.7	84
17	Comparative floral development in <i>Lithospermum</i> (Boraginaceae) and implications for the evolution and development of heterostyly. American Journal of Botany, 2012, 99, 797-805.	1.7	19
18	Are substitution rates and RNA editing correlated?. BMC Evolutionary Biology, 2010, 10, 349.	3.2	33

JERROLD I DAVIS

#	Article	IF	CITATIONS
19	Branch support via resampling: an empirical study. Cladistics, 2010, 26, 643-656.	3.3	28
20	Migration of endpoints of two genes relative to boundaries between regions of the plastid genome in the grass family (Poaceae). American Journal of Botany, 2010, 97, 874-892.	1.7	51
21	Nomenclatural changes in Lithospermum (Boraginaceae) and related taxa following a reassessment of phylogenetic relationships. Brittonia, 2009, 61, 101-111.	0.2	23
22	Are mitochondrial genes useful for the analysis of monocot relationships?. Taxon, 2006, 55, 857-870.	0.7	37
23	RNA editing and phylogenetic reconstruction in two monocot mitochondrial genes. Taxon, 2006, 55, 871-886.	0.7	42
24	Character-state space versus rate of evolution in phylogenetic inference. Cladistics, 2004, 20, 191-204.	3.3	33
25	A Phylogeny of the Monocots, as Inferred from rbcL and atpA Sequence Variation, and a Comparison of Methods for Calculating Jackknife and Bootstrap Values. Systematic Botany, 2004, 29, 467-510.	0.5	173
26	Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. American Journal of Botany, 2003, 90, 93-106.	1.7	111
27	Phylogeny and Subfamilial Classification of the Grasses (Poaceae). Annals of the Missouri Botanical Garden, 2001, 88, 373.	1.3	630
28	Phylogeny of the Celastraceae Inferred from 26S Nuclear Ribosomal DNA, Phytochrome B, rbcL, atpB, and Morphology. Molecular Phylogenetics and Evolution, 2001, 19, 353-366.	2.7	89
29	Phylogenetics and character evolution in the grass family (Poaceae): Simultaneous analysis of morphological and Chloroplast DNA restriction site character sets. Botanical Review, The, 1998, 64, 1-85.	3.9	164
30	Data Decisiveness, Data Quality, and Incongruence in Phylogenetic Analysis: An Example From the Monocotyledons Using Mitochondrial atp A Sequences. Systematic Biology, 1998, 47, 282-310.	5.6	157
31	Phylogenetics, Molecular Variation, and Species Concepts. BioScience, 1996, 46, 502-511.	4.9	35
32	Molecular Variation and the Delimitation of Species. , 1996, , 173-184.		0
33	A Phylogenetic Structure for the Monocotyledons, as Inferred from Chloroplast DNA Restriction Site Variation, and a Comparison of Measures of Clade Support. Systematic Botany, 1995, 20, 503.	0.5	77
34	Phylogenetic relationships among Puccinellia and allied genera of Poaceae as inferred from chloroplast DNA restriction site variation. American Journal of Botany, 1994, 81, 119-126.	1.7	15
35	Phylogenetic Relationships Among Puccinellia and Allied Genera of Poaceae as Inferred from Chloroplast DNA Restriction Site Variation. American Journal of Botany, 1994, 81, 119.	1.7	5
36	CHARACTER REMOVAL AS A MEANS FOR ASSESSING STABILITY OF CLADES. Cladistics, 1993, 9, 201-210.	3.3	54

JERROLD I DAVIS

#	Article	IF	CITATIONS
37	lsozyme variation and species delimitation among diploid populations of the Puccinellia nuttalliana complex (Poaceae) : character fixation and the discovery of phylogenetic species. Taxon, 1993, 42, 585-599.	0.7	26
38	Cladistic Characters and Cladogram Stability. Systematic Botany, 1993, 18, 188.	0.5	28
39	SYSTEMATIC INFERENCES FROM VARIATION IN ISOZYME PROFILES OF ARCTIC AND ALPINE CESPITOSE FESTUCA (POACEAE). American Journal of Botany, 1993, 80, 76-82.	1.7	7
40	Phylogenetic structure in the grass family (Poaceae) as inferred from chloroplast DNA restriction site variation. American Journal of Botany, 1993, 80, 1444-1454.	1.7	101
41	Phylogenetic Structure in the Grass Family (Poaceae) as Inferred from Chloroplast DNA Restriction Site Variation. American Journal of Botany, 1993, 80, 1444.	1.7	36
42	Isozyme Variation and Species Delimitation in the Puccinellia nuttalliana Complex (Poaceae): An Application of the Phylogenetic Species Concept. Systematic Botany, 1991, 16, 431.	0.5	37
43	POLYMORPHIC TAXA, MISSING VALUES AND CLADISTIC ANALYSIS. Cladistics, 1991, 7, 233-241.	3.3	201
44	Genetic and environmental contributions to multivariate morphological pattern in Puccinellia (Poaceae). Canadian Journal of Botany, 1988, 66, 2436-2444.	1.1	4
45	GENETIC AND ENVIRONMENTAL DETERMINATION OF LEAF EPIDERMAL ANATOMY IN PUCCINELLIA (POACEAE). American Journal of Botany, 1987, 74, 1744-1749.	1.7	3
46	INTROGRESSION IN CENTRAL AMERICAN PHYTOLACCA (PHYTOLACCACEAE). American Journal of Botany, 1985, 72, 1944-1953.	1.7	2
47	Introgression in Central American Phytolacca (Phytolaccaceae). American Journal of Botany, 1985, 72, 1944.	1.7	3
48	Phenotypic Plasticity and the Selection of Taxonomic Characters in Puccinellia (Poaceae). Systematic Botany, 1983, 8, 341.	0.5	29
49	Contrasting patterns of support among plastid genes and genomes for major clades of the monocotyledons. , 0, , 315-349.		10