
Andrew P Mcmahon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11681108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repairing the blood-brain barrier. Science, 2022, 375, 715-716.	6.0	1
2	Kidney repair and regeneration: perspectives of the NIDDK (Re)Building a Kidney consortium. Kidney International, 2022, 101, 845-853.	2.6	22
3	Transcriptional and functional motifs defining renal function revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
4	A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery. Cell Stem Cell, 2022, 29, 1083-1101.e7.	5.2	38
5	A β-catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites promotes commitment of mammalian nephron progenitor cells. ELife, 2021, 10, .	2.8	32
6	Proteomics of protein trafficking by in vivo tissue-specific labeling. Nature Communications, 2021, 12, 2382.	5.8	51
7	Generation of patterned kidney organoids that recapitulate the adult kidney collecting duct system from expandable ureteric bud progenitors. Nature Communications, 2021, 12, 3641.	5.8	54
8	Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	106
9	Multi-omics integration in the age of million single-cell data. Nature Reviews Nephrology, 2021, 17, 710-724.	4.1	97
10	Spatial transcriptional mapping of the human nephrogenic program. Developmental Cell, 2021, 56, 2381-2398.e6.	3.1	44
11	Multi-omic approaches to acute kidney injury and repair. Current Opinion in Biomedical Engineering, 2021, 20, 100344.	1.8	6
12	Genetic manipulation of ureteric bud tip progenitors in the mammalian kidney through an Adamts18 enhancer driven tet-on inducible system. Developmental Biology, 2020, 458, 164-176.	0.9	4
13	Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nature Metabolism, 2020, 2, 732-743.	5.1	85
14	A novel distal convoluted tubule-specific Cre-recombinase driven by the NaCl cotransporter gene. American Journal of Physiology - Renal Physiology, 2020, 319, F423-F435.	1.3	8
15	Mutational analysis of genes with ureteric progenitor cellâ€specific expression in branching morphogenesis of the mouse kidney. Developmental Dynamics, 2020, 249, 765-774.	0.8	4
16	Renoprotective and Immunomodulatory Effects of GDF15 following AKI Invoked by Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2020, 31, 701-715.	3.0	39
17	InÂVivo Developmental Trajectories of Human Podocyte Inform InÂVitro Differentiation of Pluripotent Stem Cell-Derived Podocytes. Developmental Cell, 2019, 50, 102-116.e6.	3.1	60
18	Cellular Recruitment by Podocyte-Derived Pro-migratory Factors in Assembly of the Human Renal Filter. IScience, 2019, 20, 402-414.	1.9	11

#	Article	IF	CITATIONS
19	Single-Cell Profiling Reveals Sex, Lineage, and Regional Diversity in the Mouse Kidney. Developmental Cell, 2019, 51, 399-413.e7.	3.1	266
20	Morphogenesis of the kidney and lung requires branch-tip directed activity of the Adamts18 metalloprotease. Developmental Biology, 2019, 454, 156-169.	0.9	24
21	A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nature Communications, 2019, 10, 1157.	5.8	65
22	Image-based modeling of kidney branching morphogenesis reveals GDNF-RET based Turing-type mechanism and pattern-modulating WNT11 feedback. Nature Communications, 2019, 10, 239.	5.8	58
23	Single-Cell RNA Sequencing of the Adult Mouse Kidney: From Molecular Cataloging of Cell Types to Disease-Associated Predictions. American Journal of Kidney Diseases, 2019, 73, 140-142.	2.1	10
24	Conserved and Divergent Features of Human and Mouse Kidney Organogenesis. Journal of the American Society of Nephrology: JASN, 2018, 29, 785-805.	3.0	165
25	Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney. Journal of the American Society of Nephrology: JASN, 2018, 29, 806-824.	3.0	168
26	Conserved and Divergent Molecular and Anatomic Features of Human and Mouse Nephron Patterning. Journal of the American Society of Nephrology: JASN, 2018, 29, 825-840.	3.0	107
27	Disparate levels of beta-catenin activity determine nephron progenitor cell fate. Developmental Biology, 2018, 440, 13-21.	0.9	33
28	Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites. Journal of Materials Chemistry A, 2018, 6, 1067-1074.	5.2	94
29	Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. PLoS Genetics, 2018, 14, e1007346.	1.5	56
30	A Simple Bioreactor-Based Method to Generate Kidney Organoids fromÂPluripotent Stem Cells. Stem Cell Reports, 2018, 11, 470-484.	2.3	181
31	<i>Gli3</i> controls the onset of cortical neurogenesis by regulating the radial glial cell cycle through <i>Cdk6</i> expression. Development (Cambridge), 2018, 145, .	1.2	31
32	Progressive Recruitment of Mesenchymal Progenitors Reveals a Time-Dependent Process of Cell Fate Acquisition in Mouse and Human Nephrogenesis. Developmental Cell, 2018, 45, 651-660.e4.	3.1	163
33	Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies. PLoS Genetics, 2018, 14, e1007181.	1.5	40
34	Transcriptional trajectories of human kidney injury progression. JCl Insight, 2018, 3, .	2.3	80
35	Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. ELife, 2018, 7, .	2.8	50
36	(Re)Building a Kidney. Journal of the American Society of Nephrology: JASN, 2017, 28, 1370-1378.	3.0	58

#	Article	IF	CITATIONS
37	Hedgehog Signaling: From Basic Biology to Cancer Therapy. Cell Chemical Biology, 2017, 24, 252-280.	2.5	242
38	Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone. Bone, 2017, 103, 12-19.	1.4	51
39	Repression of Interstitial Identity in Nephron Progenitor Cells by Pax2 Establishes the Nephron-Interstitium Boundary during Kidney Development. Developmental Cell, 2017, 41, 349-365.e3.	3.1	61
40	A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP Proteins Polarize Node Cells for Left-Right Symmetry Breaking. Developmental Cell, 2017, 40, 439-452.e4.	3.1	79
41	Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development. Development (Cambridge), 2017, 144, 3177-3188.	1.2	30
42	Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight, 2017, 2, .	2.3	217
43	An immunohistochemical identification key for cell types in adult mouse prostatic and urethral tissue sections. PLoS ONE, 2017, 12, e0188413.	1.1	14
44	Stem cells for all ages, yet hostage to aging. Stem Cell Investigation, 2016, 3, 11-11.	1.3	0
45	Transcriptional Regulation of the Nephrogenic Mesenchyme and Its Progeny. , 2016, , 67-74.		1
46	Sp7/Osterix Is Restricted to Bone-Forming Vertebrates where It Acts as a Dlx Co-factor in Osteoblast Specification. Developmental Cell, 2016, 37, 238-253.	3.1	99
47	AP-1 family members act with Sox9 to promote chondrocyte hypertrophy. Development (Cambridge), 2016, 143, 3012-23.	1.2	40
48	Development of the Mammalian Kidney. Current Topics in Developmental Biology, 2016, 117, 31-64.	1.0	218
49	An Emerging Regulatory Landscape for Skeletal Development. Trends in Genetics, 2016, 32, 774-787.	2.9	16
50	Hedgehog-driven myogenic tumors recapitulate skeletal muscle cellular heterogeneity. Experimental Cell Research, 2016, 340, 43-52.	1.2	3
51	Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development (Cambridge), 2016, 143, 595-608.	1.2	113
52	An ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by patched/Ptch1. ELife, 2016, 5, .	2.8	41
53	Sox9 Activation Highlights a Cellular Pathway of Renal Repair in the Acutely Injured Mammalian Kidney. Cell Reports, 2015, 12, 1325-1338.	2.9	172
54	The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nature Communications, 2015, 6, 7124.	5.8	517

#	Article	IF	CITATIONS
55	Collecting Duct-Derived Cells Display Mesenchymal Stem Cell Properties and Retain Selective In Vitro and In Vivo Epithelial Capacity. Journal of the American Society of Nephrology: JASN, 2015, 26, 81-94.	3.0	33
56	A direct fate exclusion mechanism by Sonic hedgehog-regulated transcriptional repressors. Development (Cambridge), 2015, 142, 3286-93.	1.2	42
57	Distinct Transcriptional Programs Underlie Sox9 Regulation of the Mammalian Chondrocyte. Cell Reports, 2015, 12, 229-243.	2.9	155
58	Iroquois Proteins Promote Skeletal Joint Formation by Maintaining Chondrocytes in an Immature State. Developmental Cell, 2015, 35, 358-365.	3.1	41
59	Translational Profiles of Medullary Myofibroblasts during Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2014, 25, 1979-1990.	3.0	80
60	Foxf Genes Integrate Tbx5 and Hedgehog Pathways in the Second Heart Field for Cardiac Septation. PLoS Genetics, 2014, 10, e1004604.	1.5	79
61	A Predictive Model of Bifunctional Transcription Factor Signaling during Embryonic Tissue Patterning. Developmental Cell, 2014, 31, 448-460.	3.1	31
62	Genome-wide RNA Tomography in the Zebrafish Embryo. Cell, 2014, 159, 662-675.	13.5	248
63	Stk11 (Lkb1) deletion in the osteoblast lineage leads to high bone turnover, increased trabecular bone density and cortical porosity. Bone, 2014, 69, 98-108.	1.4	15
64	Induction and patterning of the metanephric nephron. Seminars in Cell and Developmental Biology, 2014, 36, 31-38.	2.3	57
65	Defining the Acute Kidney Injury and Repair Transcriptome. Seminars in Nephrology, 2014, 34, 404-417.	0.6	47
66	Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs. Nature, 2014, 511, 46-51.	13.7	106
67	Identification of a Multipotent Self-Renewing Stromal Progenitor Population during Mammalian Kidney Organogenesis. Stem Cell Reports, 2014, 3, 650-662.	2.3	202
68	Global Quantification of Tissue Dynamics in the Developing Mouse Kidney. Developmental Cell, 2014, 29, 188-202.	3.1	225
69	Cell-specific translational profiling in acute kidney injury. Journal of Clinical Investigation, 2014, 124, 1242-1254.	3.9	172
70	Progenitor programming in mammalian nephrogenesis. Nephrology, 2013, 18, 177-179.	0.7	7
71	Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nature Communications, 2013, 4, 1367.	5.8	266
72	Gene Regulatory Networks Mediating Canonical Wnt Signal-Directed Control of Pluripotency and Differentiation in Embryo Stem Cells. Stem Cells, 2013, 31, 2667-2679.	1.4	89

#	Article	IF	CITATIONS
73	Filopodia: The Cellular Quills of Hedgehog Signaling?. Developmental Cell, 2013, 25, 328-330.	3.1	7
74	Wnt4/βâ^'Catenin Signaling in Medullary Kidney Myofibroblasts. Journal of the American Society of Nephrology: JASN, 2013, 24, 1399-1412.	3.0	153
75	Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning. Development (Cambridge), 2013, 140, 3423-3434.	1.2	77
76	Lkb1/Stk11 regulation of mTOR signaling controls the transition of chondrocyte fates and suppresses skeletal tumor formation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19450-19455.	3.3	37
77	Mutations in Hedgehog pathway genes in fetal rhabdomyomas. Journal of Pathology, 2013, 231, 44-52.	2.1	32
78	Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. Journal of Clinical Investigation, 2013, 123, 4023-4035.	3.9	281
79	Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development (Cambridge), 2012, 139, 1863-1873.	1.2	51
80	Mammalian Kidney Development: Principles, Progress, and Projections. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008300-a008300.	2.3	347
81	The activity of Cli transcription factors is essential for Kras-induced pancreatic tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1038-47.	3.3	108
82	Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional in Shh-directed neural patterning. Genes and Development, 2012, 26, 2802-2816.	2.7	158
83	Glucocorticoid Compounds Modify Smoothened Localization and Hedgehog Pathway Activity. Chemistry and Biology, 2012, 19, 972-982.	6.2	62
84	Selective Identification of Hedgehog Pathway Antagonists By Direct Analysis of Smoothened Ciliary Translocation. ACS Chemical Biology, 2012, 7, 1040-1048.	1.6	42
85	Hedgehog-Gli Pathway Activation during Kidney Fibrosis. American Journal of Pathology, 2012, 180, 1441-1453.	1.9	171
86	Six2 and Wnt Regulate Self-Renewal and Commitment of Nephron Progenitors through Shared Gene Regulatory Networks. Developmental Cell, 2012, 23, 637-651.	3.1	229
87	Invasion of Distal Nephron Precursors Associates with Tubular Interconnection during Nephrogenesis. Journal of the American Society of Nephrology: JASN, 2012, 23, 1682-1690.	3.0	52
88	Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads. PLoS ONE, 2012, 7, e47238.	1.1	38
89	A Genome-Wide Screen to Identify Transcription Factors Expressed in Pelvic Ganglia of the Lower Urinary Tract. Frontiers in Neuroscience, 2012, 6, 130.	1.4	17
90	Temporal Differences in Granulosa Cell Specification in the Ovary Reflect Distinct Follicle Fates in Mice1. Biology of Reproduction, 2012, 86, 37.	1.2	210

#	Article	IF	CITATIONS
91	An embryonic stem cellâ€based system for rapid analysis of transcriptional enhancers. Genesis, 2012, 50, 443-450.	0.8	5
92	Signaling by SHH rescues facial defects following blockade in the brain. Developmental Dynamics, 2012, 241, 247-256.	0.8	43
93	Boc and Gas1 Each Form Distinct Shh Receptor Complexes with Ptch1 and Are Required for Shh-Mediated Cell Proliferation. Developmental Cell, 2011, 20, 788-801.	3.1	220
94	Overlapping Roles and Collective Requirement for the Coreceptors GAS1, CDO, and BOC in SHH Pathway Function. Developmental Cell, 2011, 20, 775-787.	3.1	255
95	The GUDMAP database – an online resource for genitourinary research. Development (Cambridge), 2011, 138, 2845-2853.	1.2	226
96	Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development (Cambridge), 2011, 138, 4245-4254.	1.2	81
97	Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney International, 2011, 79, 317-330.	2.6	147
98	A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment. Biomedical Microdevices, 2010, 12, 1027-1041.	1.4	40
99	Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development (Cambridge), 2010, 137, 1721-1729.	1.2	149
100	Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes and Development, 2010, 24, 312-326.	2.7	270
101	Hedgehog pathway-regulated gene networks in cerebellum development and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9736-9741.	3.3	109
102	Macrophage Wnt7b is critical for kidney repair and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4194-4199.	3.3	352
103	Fate Tracing Reveals the Pericyte and Not Epithelial Origin of Myofibroblasts in Kidney Fibrosis. American Journal of Pathology, 2010, 176, 85-97.	1.9	1,281
104	Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2623-2628.	3.3	176
105	Using mechanistic Bayesian networks to identify downstream targets of the Sonic Hedgehog pathway. BMC Bioinformatics, 2009, 10, 433.	1.2	9
106	An Hh-Dependent Pathway in Lateral Plate Mesoderm Enables the Generation of Left/Right Asymmetry. Current Biology, 2009, 19, 1912-1917.	1.8	45
107	Fgf-Dependent Etv4/5 Activity Is Required for Posterior Restriction of Sonic hedgehog and Promoting Outgrowth of the Vertebrate Limb. Developmental Cell, 2009, 16, 600-606.	3.1	123
108	Modeling the spatio-temporal network that drives patterning in the vertebrate central nervous system. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 299-305.	0.9	14

#	Article	IF	CITATIONS
109	Hedgehog Signaling Is Dispensable for Adult Murine Hematopoietic Stem Cell Function and Hematopoiesis. Cell Stem Cell, 2009, 4, 559-567.	5.2	157
110	Motor Neurons with Axial Muscle Projections Specified by Wnt4/5 Signaling. Neuron, 2009, 61, 708-720.	3.8	93
111	Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Developmental Biology, 2009, 332, 273-286.	0.9	221
112	High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Developmental Biology, 2009, 333, 312-323.	0.9	163
113	A <i>Wnt7b</i> -dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development (Cambridge), 2009, 136, 161-171.	1.2	205
114	Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation. Gene Expression Patterns, 2008, 8, 297-306.	0.3	22
115	Acquisition of Granule Neuron Precursor Identity Is a Critical Determinant of Progenitor Cell Competence to Form Shh-Induced Medulloblastoma. Cancer Cell, 2008, 14, 123-134.	7.7	572
116	Canonical Wnt Signaling Regulates Organ-Specific Assembly and Differentiation of CNS Vasculature. Science, 2008, 322, 1247-1250.	6.0	540
117	β-Catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Developmental Biology, 2008, 314, 112-126.	0.9	138
118	Disp1 regulates growth of mammalian long bones through the control of Ihh distribution. Developmental Biology, 2008, 317, 480-485.	0.9	13
119	Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. Developmental Biology, 2008, 319, 396-405.	0.9	86
120	Indian hedgehog signaling from endothelial cells is required for sclera and retinal pigment epithelium development in the mouse eye. Developmental Biology, 2008, 320, 242-255.	0.9	49
121	Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Developmental Biology, 2008, 324, 88-98.	0.9	291
122	Intrinsic Epithelial Cells Repair the Kidney after Injury. Cell Stem Cell, 2008, 2, 284-291.	5.2	752
123	Six2 Defines and Regulates a Multipotent Self-Renewing Nephron Progenitor Population throughout Mammalian Kidney Development. Cell Stem Cell, 2008, 3, 169-181.	5.2	815
124	Atlas of Gene Expression in the Developing Kidney at Microanatomic Resolution. Developmental Cell, 2008, 15, 781-791.	3.1	196
125	An Eight Residue Fragment of an Acyl Carrier Protein Suffices for Post-Translational Introduction of Fluorescent Pantetheinyl Arms in Protein Modificationin vitroandin vivo. Journal of the American Chemical Society, 2008, 130, 9925-9930.	6.6	50
126	Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development (Cambridge), 2008, 135, 2489-2503.	1.2	640

#	Article	IF	CITATIONS
127	Grasping Limb Patterning. Science, 2008, 321, 350-352.	6.0	25
128	Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning. Development (Cambridge), 2008, 135, 1097-1106.	1.2	207
129	GUDMAP. Journal of the American Society of Nephrology: JASN, 2008, 19, 667-671.	3.0	225
130	In Vivo Targeted Deletion of Calpain Small Subunit, Capn4, in Cells of the Osteoblast Lineage Impairs Cell Proliferation, Differentiation, and Bone Formation. Journal of Biological Chemistry, 2008, 283, 21002-21010.	1.6	38
131	Osteoblastic regulation of B lymphopoiesis is mediated by G _s α-dependent signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16976-16981.	3.3	222
132	Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development (Cambridge), 2008, 135, 1625-1634.	1.2	147
133	Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes and Development, 2008, 22, 1662-1676.	2.7	326
134	A genome-scale analysis of the <i>cis</i> -regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes and Development, 2008, 22, 2651-2663.	2.7	269
135	Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1949-1954.	3.3	315
136	The cdx Genes and Retinoic Acid Control the Positioning and Segmentation of the Zebrafish Pronephros. PLoS Genetics, 2007, 3, e189.	1.5	287
137	Regulation of skeletogenic differentiation in cranial dermal bone. Development (Cambridge), 2007, 134, 3133-3144.	1.2	195
138	The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes and Development, 2007, 21, 1244-1257.	2.7	244
139	Independent functions and mechanisms for homeobox gene <i>Barx1</i> in patterning mouse stomach and spleen. Development (Cambridge), 2007, 134, 3603-3613.	1.2	57
140	Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development (Cambridge), 2007, 134, 1977-1989.	1.2	256
141	Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development (Cambridge), 2007, 134, 801-811.	1.2	310
142	Wnt3 signaling in the epiblast is required for proper orientation of the anteroposterior axis. Developmental Biology, 2007, 312, 312-320.	0.9	76
143	Noncanonical Wnt Signaling through G Protein-Linked PKCδActivation Promotes Bone Formation. Developmental Cell, 2007, 12, 113-127.	3.1	286
144	Abnormal Hair Development and Apparent Follicular Transformation to Mammary Gland in the Absence of Hedgehog Signaling. Developmental Cell, 2007, 12, 99-112.	3.1	92

#	Article	IF	CITATIONS
145	Wnt/β-catenin signaling regulates nephron induction during mouse kidney development. Development (Cambridge), 2007, 134, 2533-2539.	1.2	319
146	Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family–mediated transcriptional activation of TGFI²2. Nature Genetics, 2007, 39, 1225-1234.	9.4	155
147	Shifting paradigms in Hedgehog signaling. Current Opinion in Cell Biology, 2007, 19, 159-165.	2.6	114
148	A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expression Patterns, 2007, 7, 680-699.	0.3	125
149	Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development (Cambridge), 2006, 133, 3231-3244.	1.2	887
150	Control of Transcription Factor Activity and Osteoblast Differentiation in Mammalian Cells Using an Evolved Small-Molecule-Dependent Intein. Journal of the American Chemical Society, 2006, 128, 8939-8946.	6.6	48
151	The Cell Surface Membrane Proteins Cdo and Boc Are Components and Targets of the Hedgehog Signaling Pathway and Feedback Network in Mice. Developmental Cell, 2006, 10, 647-656.	3.1	334
152	Independent regulation of skeletal growth by Ihh and IGF signaling. Developmental Biology, 2006, 298, 327-333.	0.9	31
153	Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Research Part A: Clinical and Molecular Teratology, 2006, 76, 574-579.	1.6	113
154	Reproducible and inducible knockdown of gene expression in mice. Genesis, 2006, 44, 252-261.	0.8	57
155	A Novel Somatic Mouse Model to Survey Tumorigenic Potential Applied to the Hedgehog Pathway. Cancer Research, 2006, 66, 10171-10178.	0.4	257
156	Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nature Genetics, 2005, 37, 1082-1089.	9.4	147
157	A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nature Genetics, 2005, 37, 1323-1332.	9.4	178
158	Neural crest origins of the neck and shoulder. Nature, 2005, 436, 347-355.	13.7	466
159	WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature, 2005, 437, 417-421.	13.7	383
160	Mouse Disp1 is required in sonic hedgehog-expressing cells for paracrine activity of the cholesterol-modified ligand. Development (Cambridge), 2005, 132, 133-142.	1.2	84
161	BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18023-18027.	3.3	160
162	Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development (Cambridge), 2005, 132, 2809-2823.	1.2	307

#	Article	IF	CITATIONS
163	An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo. Nucleic Acids Research, 2005, 33, e155-e155.	6.5	41
164	Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development (Cambridge), 2005, 132, 143-154.	1.2	195
165	Sprouty1 Is a Critical Regulator of GDNF/RET-Mediated Kidney Induction. Developmental Cell, 2005, 8, 229-239.	3.1	327
166	Canonical Wnt Signaling in Differentiated Osteoblasts Controls Osteoclast Differentiation. Developmental Cell, 2005, 8, 751-764.	3.1	1,402
167	Wnt9b Plays a Central Role in the Regulation of Mesenchymal to Epithelial Transitions Underlying Organogenesis of the Mammalian Urogenital System. Developmental Cell, 2005, 9, 283-292.	3.1	788
168	Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Developmental Biology, 2005, 286, 149-157.	0.9	78
169	Fate-mapping of the epithelial seam during palatal fusion rules out epithelial–mesenchymal transformation. Developmental Biology, 2005, 285, 490-495.	0.9	88
170	Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. Journal of Clinical Investigation, 2005, 115, 1734-1742.	3.9	227
171	Mouse Brain Organization Revealed Through Direct Genome-Scale TF Expression Analysis. Science, 2004, 306, 2255-2257.	6.0	390
172	Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development (Cambridge), 2004, 131, 1309-1318.	1.2	372
173	Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes and Development, 2004, 18, 937-951.	2.7	524
174	The Limb Bud Shh-Fgf Feedback Loop Is Terminated by Expansion of Former ZPA Cells. Science, 2004, 305, 396-399.	6.0	143
175	Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development (Cambridge), 2004, 131, 4371-4380.	1.2	178
176	Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development (Cambridge), 2004, 131, 5031-5040.	1.2	146
177	Dose dependency of Disp1 and genetic interaction between Disp1 and other hedgehog signaling components in the mouse. Development (Cambridge), 2004, 131, 4021-4033.	1.2	24
178	Hedgehog Signaling: Iguana Debuts as a Nuclear Gatekeeper. Current Biology, 2004, 14, R668-R670.	1.8	14
179	Evidence for an Expansion-Based Temporal Shh Gradient in Specifying Vertebrate Digit Identities. Cell, 2004, 118, 517-528.	13.5	893
180	Recent genetic studies of mouse kidney development. Current Opinion in Genetics and Development, 2004, 14, 550-557.	1.5	93

#	Article	IF	CITATIONS
181	Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Developmental Biology, 2004, 270, 393-410.	0.9	313
182	Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate. Journal of Clinical Investigation, 2004, 113, 1692-1700.	3.9	312
183	FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO Journal, 2003, 22, 1811-1823.	3.5	168
184	Branching morphogenesis of the lung: new molecular insights into an old problem. Trends in Cell Biology, 2003, 13, 86-91.	3.6	94
185	Maternal inheritance of Cre activity in aSox2Cre deleter strain. Genesis, 2003, 37, 51-53.	0.8	102
186	1 Developmental roles and clinical significance of Hedgehog signaling. Current Topics in Developmental Biology, 2003, 53, 1-114.	1.0	799
187	Ectodermal Wnt3/beta -catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes and Development, 2003, 17, 394-409.	2.7	262
188	The Morphogen Sonic Hedgehog Is an Axonal Chemoattractant that Collaborates with Netrin-1 in Midline Axon Guidance. Cell, 2003, 113, 11-23.	13.5	577
189	Sonic Hedgehog Is Required for Progenitor Cell Maintenance in Telencephalic Stem Cell Niches. Neuron, 2003, 39, 937-950.	3.8	651
190	Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes and Development, 2003, 17, 342-347.	2.7	263
191	Retinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development. Development (Cambridge), 2003, 130, 2967-2980.	1.2	123
192	Loss of Emx2 function leads to ectopic expression of Wnt1 in the developing telencephalon and cortical dysplasia. Development (Cambridge), 2003, 130, 2275-2287.	1.2	53
193	Wnt11andRet/Gdnfpathways cooperate in regulating ureteric branching during metanephric kidney development. Development (Cambridge), 2003, 130, 3175-3185.	1.2	415
194	Combined activities of hedgehog signaling inhibitors regulate pancreas development. Development (Cambridge), 2003, 130, 4871-4879.	1.2	105
195	A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes and Development, 2002, 16, 2849-2864.	2.7	234
196	Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8084-8089.	3.3	156
197	Efficient Recombination in Diverse Tissues by a Tamoxifen-Inducible Form of Cre: A Tool for Temporally Regulated Gene Activation/Inactivation in the Mouse. Developmental Biology, 2002, 244, 305-318.	0.9	1,195
198	Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development (Cambridge), 2002, 129, 5323-5337.	1.2	252

#	Article	IF	CITATIONS
199	Dach1, a vertebrate homologue of Drosophila dachshund, is expressed in the developing eye and ear of both chick and mouse and is regulated independently of Pax and Eya genes. Mechanisms of Development, 2002, 111, 75-87.	1.7	55
200	Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mechanisms of Development, 2002, 119, S97-S101.	1.7	398
201	Wnt-1 and Wnt-4 regulate thymic cellularity. European Journal of Immunology, 2002, 32, 967-971.	1.6	105
202	Development of normal retinal organization depends on Sonic hedgehog signaling from ganglion cells. Nature Neuroscience, 2002, 5, 831-832.	7.1	127
203	Cholesterol modification of Hedgehog family proteins. Journal of Clinical Investigation, 2002, 110, 591-596.	3.9	82
204	Cholesterol modification of Hedgehog family proteins. Journal of Clinical Investigation, 2002, 110, 591-596.	3.9	55
205	A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development (Cambridge), 2002, 129, 4807-4819.	1.2	152
206	Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development (Cambridge), 2002, 129, 4963-4974.	1.2	235
207	Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development (Cambridge), 2002, 129, 5301-5312.	1.2	377
208	A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development (Cambridge), 2002, 129, 2087-2098.	1.2	600
209	A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development (Cambridge), 2002, 129, 2087-98.	1.2	278
210	A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development (Cambridge), 2002, 129, 4807-19.	1.2	69
211	Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development (Cambridge), 2002, 129, 4963-74.	1.2	96
212	Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development (Cambridge), 2002, 129, 5301-12.	1.2	216
213	Hedgehog signaling in animal development: paradigms and principles. Genes and Development, 2001, 15, 3059-3087.	2.7	2,630
214	Characterization of Pax-2 Regulatory Sequences That Direct Transgene Expression in the Wolffian Duct and Its Derivatives. Developmental Biology, 2001, 229, 128-140.	0.9	53
215	The Whereabouts of a Morphogen: Direct Evidence for Short- and Graded Long-Range Activity of Hedgehog Signaling Peptides. Developmental Biology, 2001, 236, 364-386.	0.9	260
216	Wnt7b Regulates Placental Development in Mice. Developmental Biology, 2001, 237, 324-332.	0.9	137

#	Article	IF	CITATIONS
217	Cholesterol Modification of Sonic Hedgehog Is Required for Long-Range Signaling Activity and Effective Modulation of Signaling by Ptc1. Cell, 2001, 105, 599-612.	13.5	475
218	Smoothened Mutants Reveal Redundant Roles for Shh and Ihh Signaling Including Regulation of L/R Asymmetry by the Mouse Node. Cell, 2001, 105, 781-792.	13.5	543
219	Activation of Expression of Hedgehog Target Genes in Basal Cell Carcinomas. Journal of Investigative Dermatology, 2001, 116, 739-742.	0.3	139
220	Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Developmental Dynamics, 2001, 221, 342-349.	0.8	89
221	Vesicles and the spinal cord. Nature, 2001, 412, 136-137.	13.7	5
222	Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. Journal of Clinical Investigation, 2001, 107, 295-304.	3.9	356
223	BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development (Cambridge), 2001, 128, 4523-4534.	1.2	382
224	Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development (Cambridge), 2001, 128, 5099-5108.	1.2	565
225	Sonic Hedgehog–Regulated Oligodendrocyte Lineage Genes Encoding bHLH Proteins in the Mammalian Central Nervous System. Neuron, 2000, 25, 317-329.	3.8	779
226	More Surprises in the Hedgehog Signaling Pathway. Cell, 2000, 100, 185-188.	13.5	202
227	Essential function of <i>Wnt-4</i> in mammary gland development downstream of progesterone signaling. Genes and Development, 2000, 14, 650-654.	2.7	416
228	Secreted Molecules in Metanephric Induction. Journal of the American Society of Nephrology: JASN, 2000, 11, S116-S119.	3.0	26
229	<i>Sonic hedgehog </i> Regulates Proliferation and Inhibits Differentiation of CNS Precursor Cells. Journal of Neuroscience, 1999, 19, 8954-8965.	1.7	357
230	Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nature Cell Biology, 1999, 1, 158-164.	4.6	360
231	Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature, 1999, 397, 617-621.	13.7	716
232	Female development in mammals is regulated by Wnt-4 signalling. Nature, 1999, 397, 405-409.	13.7	1,115
233	Schwann Cell-Derived Desert Hedgehog Signals Nerve Sheath Formation. Annals of the New York Academy of Sciences, 1999, 883, 196-202.	1.8	32
234	Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature, 1999, 401, 598-602.	13.7	428

#	Article	IF	CITATIONS
235	Pax-2 regulatory sequences that direct transgene expression in the developing neural plate and external granule cell layer of the cerebellum. Developmental Brain Research, 1999, 117, 99-108.	2.1	29
236	Cystic malformation of the posterior cerebellar vermis in transgenic mice that ectopically expressEngrailed-1, a homeodomain transcription factor. , 1999, 60, 22-28.		16
237	Schwann Cell–Derived Desert Hedgehog Controls the Development of Peripheral Nerve Sheaths. Neuron, 1999, 23, 713-724.	3.8	323
238	Negative Feedback Mechanisms and Their Roles during Pattern Formation. Cell, 1999, 97, 13-16.	13.5	124
239	Modulation of Early but Not Later Stages of Programmed Cell Death in Embryonic Avian Spinal Cord by Sonic Hedgehog. Molecular and Cellular Neurosciences, 1999, 13, 348-361.	1.0	49
240	Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature, 1998, 395, 707-710.	13.7	313
241	Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Current Biology, 1998, 8, 1323-S2.	1.8	1,211
242	Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Current Biology, 1998, 8, 1083-1086.	1.8	589
243	The Effect of Pertussis Toxin on Zebrafish Development: A Possible Role for Inhibitory G-Proteins in Hedgehog Signaling. Developmental Biology, 1998, 194, 166-171.	0.9	75
244	Analysis of Epithelial–Mesenchymal Interactions in the Initial Morphogenesis of the Mammalian Tooth. Developmental Biology, 1998, 202, 215-227.	0.9	276
245	The Classical Mouse Mutant Postaxial Hemimelia Results from a Mutation in theWnt7a Gene. Developmental Biology, 1998, 202, 228-234.	0.9	51
246	Noggin, Cartilage Morphogenesis, and Joint Formation in the Mammalian Skeleton. Science, 1998, 280, 1455-1457.	6.0	768
247	Evidence That Absence ofWnt-3aSignaling Promotes Neuralization Instead of Paraxial Mesoderm Development in the Mouse. Developmental Biology, 1997, 183, 234-242.	0.9	267
248	Analysis of Neural Crest Cell Migration in Splotch Mice Using a Neural Crest-Specific LacZ Reporter. Developmental Biology, 1997, 185, 139-147.	0.9	100
249	GDNF Induces Branching and Increased Cell Proliferation in the Ureter of the Mouse. Developmental Biology, 1997, 192, 193-198.	0.9	164
250	A 5.5-kb Enhancer Is both Necessary and Sufficient for Regulation ofWnt-1Transcriptionin Vivo. Developmental Biology, 1997, 192, 300-309.	0.9	37
251	Wnt signalling required for expansion of neural crest and CNS progenitors. Nature, 1997, 389, 966-970.	13.7	655
252	The zebrafish organizer requires chordino. Nature, 1997, 387, 862-863.	13.7	363

#	Article	IF	CITATIONS
253	Recent advances in hedgehog signalling. Trends in Cell Biology, 1997, 7, 442-446.	3.6	81
254	The world according to bedgebog. Trends in Genetics, 1997, 13, 14-21.	2.9	531
255	Early mouse development: lessons from gene targeting. Current Opinion in Genetics and Development, 1996, 6, 439-444.	1.5	37
256	Sertoli cell signaling by Desert hedgehog regulates the male germline. Current Biology, 1996, 6, 298-304.	1.8	608
257	Early deletion of neuromeres inWnt-1-/- mutant mice: Evaluation by morphological and molecular markers. Journal of Comparative Neurology, 1996, 374, 246-258.	0.9	56
258	Cell death in the CNS of the Wnt-1 mutant mouse. , 1996, 31, 275-282.		29
259	Sonic hedgehog: making the gradient. Chemistry and Biology, 1996, 3, 13-16.	6.2	8
260	Hedgehogs in the clinic. Nature Medicine, 1996, 2, 1308-1310.	15.2	4
261	Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature, 1996, 381, 238-241.	13.7	591
262	Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature, 1996, 383, 332-334.	13.7	270
263	Somite Differentiation: Sonic signals somites. Current Biology, 1995, 5, 612-614.	1.8	69
264	Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Nature Medicine, 1995, 1, 1184-1188.	15.2	149
265	Dorsalizing signal Wnt-7a required for normal polarity of D–V and A–P axes of mouse limb. Nature, 1995, 374, 350-353.	13.7	698
266	HedgehogandBmpGenes Are Coexpressed at Many Diverse Sites of Cell–Cell Interaction in the Mouse Embryo. Developmental Biology, 1995, 172, 126-138.	0.9	1,313
267	Cloning, Expression, and Chromosomal Location of SHH and IHH: Two Human Homologues of the Drosophila Segment Polarity Gene Hedgehog. Genomics, 1995, 28, 44-51.	1.3	181
268	Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1. Mechanisms of Development, 1995, 52, 3-8.	1.7	148
269	Wnt expression patterns in chick embryo nervous system. Mechanisms of Development, 1995, 52, 9-25.	1.7	249
270	A single homeodomain binding site restricts spatial expression of Wnt-1 in the developing brain. Mechanisms of Development, 1995, 53, 87-96.	1.7	48

#	Article	IF	CITATIONS
271	Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature, 1995, 375, 322-325.	13.7	463
272	Molecular genetic analysis of Wnt signals in mouse development. Seminars in Developmental Biology, 1995, 6, 267-274.	1.3	6
273	Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature, 1994, 372, 679-683.	13.7	973
274	Mouse Development: Winged-helix in axial patterning. Current Biology, 1994, 4, 903-906.	1.8	9
275	Wnt genes and vertebrate development. Current Opinion in Genetics and Development, 1994, 4, 523-528.	1.5	162
276	The <i>hedgehog</i> gene family in <i>Drosophila</i> and vertebrate development. Development (Cambridge), 1994, 1994, 43-51.	1.2	73
277	Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell, 1993, 75, 1417-1430.	13.5	1,993
278	A Super Family of Putative Developmental Signaling Molecules Related to the Proto-Oncogene Wnt-1/int-1. Advances in Developmental Biology (1992), 1992, 1, 31-60.	1.1	12
279	The role of Wnt genes in vertebrate development. Current Opinion in Genetics and Development, 1992, 2, 562-566.	1.5	61
280	The Wnt family of developmental regulators. Trends in Genetics, 1992, 8, 236-242.	2.9	83
281	The <i>WNT</i> Family of Cell Signalling Molecules in Postimplantation Development of the Mouse. Novartis Foundation Symposium, 1992, 165, 199-218.	1.2	10
282	Isolation of cDNAs partially encoding four Xenopus proteins and characterization of their transient expression during embryonic development. Developmental Biology, 1991, 143, 230-234.	0.9	76
283	The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 1990, 62, 1073-1085.	13.5	1,474
284	Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell, 1989, 58, 1075-1084.	13.5	482
285	Expression of Proto-oncogene int-1 is Restricted to Specific Regions of the Developing Mouse Neural Tube. , 1989, , 311-317.		3
286	<i>int</i> -1 - a proto-oncogene involved in cell signalling. Development (Cambridge), 1989, 107, 161-167.	1.2	34
287	Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell, 1987, 50, 79-88.	13.5	589
288	Composition and expression of spectrin-based membrane skeletons in non-erythroid cells. BioEssays, 1987, 7, 159-164.	1.2	18

#	Article	IF	CITATIONS
289	Introduction of cloned DNA into sea urchin egg cytoplasm: Replication and persistence during embryogenesis. Developmental Biology, 1985, 108, 420-430.	0.9	226
290	Persistence and integration of cloned DNA in postembryonic sea urchins. Developmental Biology, 1985, 108, 431-442.	0.9	97
291	Spatial Transcriptional Mapping of the Human Nephrogenic Program. SSRN Electronic Journal, 0, , .	0.4	1