Stijn Van De Vyver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11680924/publications.pdf

Version: 2024-02-01

22 papers 2,982 citations

331670 21 h-index 677142 22 g-index

24 all docs

24 docs citations

times ranked

24

2887 citing authors

#	Article	IF	CITATIONS
1	Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chemistry, 2010, 12, 1560.	9.0	286
2	Emerging catalytic processes for the production of adipic acid. Catalysis Science and Technology, 2013, 3, 1465-1479.	4.1	266
3	Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chemical Communications, 2010, 46, 3577.	4.1	236
4	Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catalysis Science and Technology, 2011, 1, 714.	4.1	220
5	Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy and Environmental Science, 2011, 4, 3601.	30.8	208
6	Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chemical Communications, 2011, 47, 5590-5592.	4.1	181
7	A Continuous Flow Strategy for the Coupled Transfer Hydrogenation and Etherification of 5â€(Hydroxymethyl)furfural using Lewis Acid Zeolites. ChemSusChem, 2014, 7, 2255-2265.	6.8	177
8	Selective Bifunctional Catalytic Conversion of Cellulose over Reshaped Ni Particles at the Tip of Carbon Nanofibers. ChemSusChem, 2010, 3, 698-701.	6.8	171
9	Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie - International Edition, 2015, 54, 9835-9838.	13.8	148
10	Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen. Chemical Communications, 2008, , 6011.	4.1	131
11	Tuning the Acid/Metal Balance of Carbon Nanofiberâ€Supported Nickel Catalysts for Hydrolytic Hydrogenation of Cellulose. ChemSusChem, 2012, 5, 1549-1558.	6.8	131
12	Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C. Green Chemistry, 2011, 13, 2167.	9.0	125
13	Solid Lewis Acids Catalyze the Carbon–Carbon Coupling between Carbohydrates and Formaldehyde. ACS Catalysis, 2015, 5, 972-977.	11.2	116
14	Conversion of (Ligno)Cellulose Feeds to Isosorbide with Heteropoly Acids and Ru on Carbon. ChemSusChem, 2013, 6, 199-208.	6.8	108
15	Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chemistry, 2014, 16, 719-726.	9.0	92
16	Lewis acid catalysis on single site Sn centers incorporated into silica hosts. Coordination Chemistry Reviews, 2017, 343, 220-255.	18.8	87
17	Tailoring nanohybrids and nanocomposites for catalytic applications. Green Chemistry, 2013, 15, 1398.	9.0	82
18	Metalloenzymeâ€Like Zeolites as Lewis Acid Catalysts for CC Bond Formation. Angewandte Chemie - International Edition, 2015, 54, 12554-12561.	13.8	75

#	ARTICLE	IF	CITATIONS
19	Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene) Tj ETQq $1\ 1\ 0.7$	784314 rg	BT_/Overlock
20	Mechanistic Insights into the Kinetic and Regiochemical Control of the Thiol-Promoted Catalytic Synthesis of Diphenolic Acid. ACS Catalysis, 2012, 2, 2700-2704.	11.2	38
21	Regioselective synthesis of renewable bisphenols from 2,3-pentanedione and their application as plasticizers. Green Chemistry, 2014, 16, 1999-2007.	9.0	28
22	Preparation of Pt on NaY zeolite catalysts for conversion of glycerol into 1,2-propanediol. Studies in Surface Science and Catalysis, 2010, 175, 771-774.	1.5	12