Andrew H Altieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1167974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneity within and among co-occurring foundation species increases biodiversity. Nature Communications, 2022, 13, 581.	12.8	21
2	Invertebrate Grazing on Live Turtlegrass (Thalassia testudinum): A Common Interaction That May Facilitate Fungal Growth. Frontiers in Marine Science, 2022, 8, .	2.5	0
3	Reply to Wilson etÂal.: Feedbacks between geomorphology and fauna engineers are key to predicting coastal response to rising seas. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	0
4	Initial estuarine response to inorganic nutrient inputs from a legacy mining facility adjacent to Tampa Bay, Florida. Marine Pollution Bulletin, 2022, 178, 113598.	5.0	18
5	Governance and the mangrove commons: Advancing the cross-scale, nested framework for the global conservation and wise use of mangroves. Journal of Environmental Management, 2022, 312, 114823.	7.8	13
6	Predator control of marine communities increases with temperature across 115 degrees of latitude. Science, 2022, 376, 1215-1219.	12.6	36
7	Caribbean mangrove forests act as coral refugia by reducing light stress and increasing coral richness. Ecosphere, 2021, 12, e03413.	2.2	11
8	Resilience of Tropical Ecosystems to Ocean Deoxygenation. Trends in Ecology and Evolution, 2021, 36, 227-238.	8.7	30
9	Seagrass structural and elemental indicators reveal high nutrient availability within a tropical lagoon in Panama. PeerJ, 2021, 9, e11308.	2.0	3
10	Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Nature Communications, 2021, 12, 4522.	12.8	42
11	A global metaâ€analysis of temperature effects on marine fishes' digestion across trophic groups. Global Ecology and Biogeography, 2021, 30, 795-810.	5.8	7
12	Differential susceptibility of reef-building corals to deoxygenation reveals remarkable hypoxia tolerance. Scientific Reports, 2021, 11, 23168.	3.3	17
13	Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17891-17902.	7.1	45
14	Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Scientific Reports, 2020, 10, 6729.	3.3	60
15	Climate drives the geography of marine consumption by changing predator communities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28160-28166.	7.1	29
16	The biogeography of invasion in tropical and temperate seagrass beds: Testing interactive effects of predation and propagule pressure. Diversity and Distributions, 2019, 25, 285-297.	4.1	15
17	Oxygen: the universal currency on coral reefs. Coral Reefs, 2019, 38, 177-198.	2.2	101
18	Effects of Changing Vegetation Composition on Community Structure, Ecosystem Functioning, and Predator–Prey Interactions at the Saltmarsh-Mangrove Ecotone. Diversity, 2019, 11, 208.	1.7	14

ANDREW H ALTIERI

#	Article	IF	CITATIONS
19	The Foundation for Building the Conservation Capacity of Community Ecology. Frontiers in Marine Science, 2019, 6, .	2.5	10
20	Dead Zones: Oxygen Depletion in Coastal Ecosystems. , 2019, , 453-473.		24
21	Dead Zones: Low Oxygen in Coastal Waters. , 2019, , 22-34.		0
22	Secondary foundation species enhance biodiversity. Nature Ecology and Evolution, 2018, 2, 634-639.	7.8	85
23	Bioerosion in a changing world: a conceptual framework. Ecology Letters, 2018, 21, 422-438.	6.4	48
24	The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama. Peerl, 2018, 6, e4455.	2.0	26
25	The emergent role of small-bodied herbivores in pre-empting phase shifts on degraded coral reefs. Scientific Reports, 2017, 7, 39670.	3.3	43
26	Tropical dead zones and mass mortalities on coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3660-3665.	7.1	227
27	Community composition in mangrove ponds with pulsed hypoxic and acidified conditions. Ecosphere, 2017, 8, e02053.	2.2	18
28	Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat. PeerJ, 2017, 5, e2848.	2.0	8
29	The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere, 2016, 7, e01399.	2.2	46
30	How habitat-modifying organisms structure the food web of two coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152326.	2.6	58
31	Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems. Annual Review of Marine Science, 2015, 7, 139-158.	11.6	74
32	Climate change and dead zones. Global Change Biology, 2015, 21, 1395-1406.	9.5	272
33	Herbivory drives zonation of stressâ€ŧolerant marsh plants. Ecology, 2015, 96, 1318-1328.	3.2	70
34	Modular mobile foundation species as reservoirs of biodiversity. Ecosphere, 2014, 5, 1-11.	2.2	7
35	Clobal shifts towards positive species interactions with increasing environmental stress. Ecology Letters, 2013, 16, 695-706.	6.4	691
36	Regional Ontogeny of New England Salt Marsh Dieâ€Off. Conservation Biology, 2013, 27, 1041-1048.	4.7	20

ANDREW H ALTIERI

#	Article	IF	CITATIONS
37	Latent impacts: the role of historical human activity in coastal habitat loss. Frontiers in Ecology and the Environment, 2013, 11, 69-74.	4.0	54
38	Do snails facilitate bloom-forming macroalgae in a eutrophic estuary?. Journal of Experimental Marine Biology and Ecology, 2013, 446, 253-261.	1.5	5
39	Feedbacks underlie the resilience of salt marshes and rapid reversal of consumerâ€driven dieâ€off. Ecology, 2013, 94, 1647-1657.	3.2	28
40	New England Salt Marsh Recovery: Opportunistic Colonization of an Invasive Species and Its Non-Consumptive Effects. PLoS ONE, 2013, 8, e73823.	2.5	22
41	A trophic cascade triggers collapse of a saltâ€marsh ecosystem with intensive recreational fishing. Ecology, 2012, 93, 1402-1410.	3.2	163
42	Belowground herbivory increases vulnerability of New England salt marshes to dieâ€off. Ecology, 2012, 93, 2085-2094.	3.2	64
43	Whole-Community Facilitation Regulates Biodiversity on Patagonian Rocky Shores. PLoS ONE, 2011, 6, e24502.	2.5	100
44	Interactions among Foundation Species and Their Consequences for Community Organization, Biodiversity, and Conservation. BioScience, 2011, 61, 782-789.	4.9	219
45	Habitat Cascades: The Conceptual Context and Global Relevance of Facilitation Cascades via Habitat Formation and Modification. Integrative and Comparative Biology, 2010, 50, 158-175.	2.0	216
46	Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology, 2010, 91, 1269-1275.	3.2	123
47	Role of Crab Herbivory in Dieâ€Off of New England Salt Marshes. Conservation Biology, 2009, 23, 672-679.	4.7	147
48	Substrate mediates consumer control of salt marsh cordgrass on Cape Cod, New England. Ecology, 2009, 90, 2108-2117.	3.2	40
49	Consumers Control Diversity and Functioning of a Natural Marine Ecosystem. PLoS ONE, 2009, 4, e5291.	2.5	26
50	DEAD ZONES ENHANCE KEY FISHERIES SPECIES BY PROVIDING PREDATION REFUGE. Ecology, 2008, 89, 2808-2818.	3.2	62
51	Hierarchical Organization via a Facilitation Cascade in Intertidal Cordgrass Bed Communities. American Naturalist, 2007, 169, 195-206.	2.1	168
52	LOCAL EXTINCTION OF A FOUNDATION SPECIES IN A HYPOXIC ESTUARY: INTEGRATING INDIVIDUALS TO ECOSYSTEM. Ecology, 2006, 87, 717-730.	3.2	82
53	Scale-dependent interactions and community structure on cobble beaches. Ecology Letters, 2005, 9, 051109031307001.	6.4	51
54	Settlement Cues in the Locally Dispersing Temperate Cup Coral Balanophyllia elegans. Biological Bulletin, 2003, 204, 241-245.	1.8	13

#	Article	IF	CITATIONS
55	Symbiosis between an Alpheid Shrimp and a Xanthoid Crab in Salt Marshes of Mid-Atlantic States, U.S.A Journal of Crustacean Biology, 2003, 23, 876-879.	0.8	22
56	Facilitation cascade explains positive relationship between native biodiversity and invasion success Ecology, 0, , 100319061621033.	3.2	0