
Federico Raspini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11678927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Satellite-based interferometric monitoring of deformation characteristics and their relationship with internal hydrothermal structures of an earthflow in Zhimei, Yushu, Qinghai-Tibet Plateau. Remote Sensing of Environment, 2022, 273, 112987.	11.0	9
2	Nation-wide mapping and classification of ground deformation phenomena through the spatial clustering of P-SBAS InSAR measurements: Italy case study. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 189, 1-22.	11.1	26
3	A New Set of Tools for the Generation of InSAR Visibility Maps over Wide Areas. Geosciences (Switzerland), 2021, 11, 229.	2.2	7
4	Sentinel-1-based monitoring services at regional scale in Italy: State of the art and main findings. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102448.	2.8	6
5	Sentinel-1 InSAR Data for the Continuous Monitoring of Ground Deformation and Infrastructures at Regional Scale. Springer Remote Sensing/photogrammetry, 2021, , 63-80.	0.4	1
6	Monitoring and Early Warning Systems: Applications and Perspectives. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 1-21.	0.3	2
7	Advanced Technologies for Landslides (WCoE 2017–2020). ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 259-265.	0.3	0
8	Satellite InSAR as a New Tool for the Verification of Landslide Engineering Remedial Works at the Regional Scale: A Case Study in the Three Gorges Resevoir Area, China. Applied Sciences (Switzerland), 2020, 10, 6435.	2.5	8
9	Using Satellite Interferometry to Infer Landslide Sliding Surface Depth and Geometry. Remote Sensing, 2020, 12, 1462.	4.0	23
10	Review of Satellite Interferometry for Landslide Detection in Italy. Remote Sensing, 2020, 12, 1351.	4.0	90
11	Vulnerability Assessment of Buildings due to Land Subsidence Using InSAR Data in the Ancient Historical City of Pistoia (Italy). Sensors, 2020, 20, 2749.	3.8	37
12	Regional Recognition and Classification of Active Loess Landslides Using Two-Dimensional Deformation Derived from Sentinel-1 Interferometric Radar Data. Remote Sensing, 2020, 12, 1541.	4.0	19
13	Landslide-Induced Damage Probability Estimation Coupling InSAR and Field Survey Data by Fragility Curves. Remote Sensing, 2019, 11, 1486.	4.0	34
14	Monitoring Ground Instabilities Using SAR Satellite Data: A Practical Approach. ISPRS International Journal of Geo-Information, 2019, 8, 307.	2.9	42
15	Semi-Automatic Identification and Pre-Screening of Geological–Geotechnical Deformational Processes Using Persistent Scatterer Interferometry Datasets. Remote Sensing, 2019, 11, 1675.	4.0	49
16	Persistent Scatterers continuous streaming for landslide monitoring and mapping: the case of the Tuscany region (Italy). Landslides, 2019, 16, 2033-2044.	5.4	55
17	Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Scientific Reports, 2019, 9, 14137.	3.3	106
18	Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic. Remote Sensing, 2019, 11, 2015.	4.0	33

FEDERICO RASPINI

#	Article	IF	CITATIONS
19	A Sentinel-1 based hot-spot analysis: landslide mapping in north-western Italy. International Journal of Remote Sensing, 2019, 40, 7898-7921.	2.9	54
20	Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology, 2019, 335, 62-75.	2.6	95
21	A Sentinel-1-based clustering analysis for geo-hazards mitigation at regional scale: a case study in Central Italy. Geomatics, Natural Hazards and Risk, 2019, 10, 2257-2275.	4.3	18
22	TXT-tool 2.039-3.1: Satellite Remote Sensing Techniques for Landslides Detection and Mapping. , 2018, , 235-254.		2
23	Satellite radar data for back-analyzing a landslide event: the Ponzano (Central Italy) case study. Landslides, 2018, 15, 773-782.	5.4	41
24	The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides, 2018, 15, 123-133.	5.4	282
25	Ground deformation and associated hazards in NW peloponnese (Greece). European Journal of Remote Sensing, 2018, 51, 710-722.	3.5	5
26	From Picture to Movie: Twenty Years of Ground Deformation Recording Over Tuscany Region (Italy) With Satellite InSAR. Frontiers in Earth Science, 2018, 6, .	1.8	40
27	From ERS 1/2 to Sentinel-1: Subsidence Monitoring in Italy in the Last Two Decades. Frontiers in Earth Science, 2018, 6, .	1.8	55
28	Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Scientific Reports, 2018, 8, 7253.	3.3	195
29	Subsidence Evolution of the Firenze–Prato–Pistoia Plain (Central Italy) Combining PSI and GNSS Data. Remote Sensing, 2018, 10, 1146.	4.0	51
30	Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenvironmental Disasters, 2017, 4, .	3.6	204
31	The contribution of satellite SAR-derived displacement measurements in landslide risk management practices. Natural Hazards, 2017, 86, 327-351.	3.4	57
32	Monitoring the Rapid-Moving Reactivation of Earth Flows by Means of GB-InSAR: The April 2013 Capriglio Landslide (Northern Appennines, Italy). Remote Sensing, 2017, 9, 165.	4.0	37
33	Combined Use of C- and X-Band SAR Data for Subsidence Monitoring in an Urban Area. Geosciences (Switzerland), 2017, 7, 21.	2.2	36
34	Remote Sensing Techniques in Landslide Mapping and Monitoring, Keynote Lecture. , 2017, , 1-19.		10
35	Remote Sensing Mapping and Monitoring of the Capriglio Landslide (Parma Province, Northern Italy). , 2017, , 231-238.		3
36	How to Improve the Accuracy of Landslide Susceptibility Maps Using PSInSAR Data. , 2017, , 965-971.		1

3

Federico Raspini

#	Article	IF	CITATIONS
37	Space-Borne and Ground-Based InSAR Data Integration: The Ãknes Test Site. Remote Sensing, 2016, 8, 237.	4.0	52
38	PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization. Remote Sensing, 2016, 8, 120.	4.0	81
39	A simple method to help determine landslide susceptibility from spaceborne InSAR data: the Montescaglioso case study. Environmental Earth Sciences, 2016, 75, 1.	2.7	25
40	Updated landslide inventory of the area between the Furiano and Rosmarino creeks (Sicily, Italy). Journal of Maps, 2016, 12, 1010-1019.	2.0	14
41	Landslide susceptibility map refinement using PSInSAR data. Remote Sensing of Environment, 2016, 184, 302-315.	11.0	93
42	The effectiveness of high-resolution LiDAR data combined with PSInSAR data in landslide study. Landslides, 2016, 13, 399-410.	5.4	49
43	Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology, 2016, 264, 80-94.	2.6	53
44	Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy). Remote Sensing, 2015, 7, 14576-14596.	4.0	84
45	Remote sensing as tool for development of landslide databases: The case of the Messina Province (Italy) geodatabase. Geomorphology, 2015, 249, 103-118.	2.6	73
46	Multi-Temporal Evaluation of Landslide Movements and Impacts on Buildings in San Fratello (Italy) By Means of C-Band and X-Band PSI Data. Pure and Applied Geophysics, 2015, 172, 3043-3065.	1.9	45
47	The COSMO-SkyMed Constellation Monitors the Costa Concordia Wreck. Remote Sensing, 2014, 6, 3988-4002.	4.0	19
48	Ground subsidence phenomena in the Delta municipality region (Northern Greece): Geotechnical modeling and validation with Persistent Scatterer Interferometry. International Journal of Applied Earth Observation and Geoinformation, 2014, 28, 78-89.	2.8	55
49	Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. , 2014, , 351-357.		8
50	Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sensing, 2013, 5, 1045-1065.	4.0	233
51	Multi-temporal mapping of land subsidence at basin scale exploiting Persistent Scatterer Interferometry: case study of Gioia Tauro plain (Italy). Journal of Maps, 2012, 8, 514-524.	2.0	56