Jianwei Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11678254/publications.pdf

Version: 2024-02-01

193	8,373	51 h-index	77
papers	citations		g-index
195	195	195	8828
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Materials Chemistry Frontiers, 2017, 1, 212-230.	5.9	254
2	Defect engineering in thermoelectric materials: what have we learned?. Chemical Society Reviews, 2021, 50, 9022-9054.	38.1	201
3	Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. Journal of Materials Chemistry C, 2016, 4, 7364-7376.	5.5	186
4	Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS Nano, 2019, 13, 7975-7984.	14.6	171
5	Multifunctional 0D–2D Ni ₂ P Nanocrystals–Black Phosphorus Heterostructure. Advanced Energy Materials, 2017, 7, 1601285.	19.5	149
6	Promoting Electrocatalytic Hydrogen Evolution Reaction and Oxygen Evolution Reaction by Fields: Effects of Electric Field, Magnetic Field, Strain, and Light. Small Methods, 2020, 4, 2000494.	8.6	146
7	Cubic Polyhedral Oligomeric Silsesquioxane Based Functional Materials: Synthesis, Assembly, and Applications. Chemistry - an Asian Journal, 2016, 11, 1322-1337.	3.3	142
8	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small, 2017, 13, 1700661.	10.0	139
9	Trimeric supramolecular liquid crystals induced by halogen bonds. Journal of Materials Chemistry, 2006, 16, 3540.	6.7	130
10	Viologen-Based Electrochromic Materials: From Small Molecules, Polymers and Composites to Their Applications. Polymers, 2019, 11, 1839.	4.5	127
11	Efficient Nitrate Synthesis via Ambient Nitrogen Oxidation with Ruâ€Doped TiO ₂ /RuO ₂ Electrocatalysts. Advanced Materials, 2020, 32, e2002189.	21.0	125
12	Superhydrophobic fluorinated POSS–PVDF-HFP nanocomposite coating on glass by electrospinning. Journal of Materials Chemistry, 2012, 22, 18479.	6.7	122
13	Aggregation-induced emission (AIE)-active polymers for explosive detection. Polymer Chemistry, 2019, 10, 3822-3840.	3.9	120
14	Electrical conductivity of polyaniline–dodecylbenzene sulphonic acid complex: thermal degradation and its mechanism. Synthetic Metals, 2002, 128, 167-178.	3.9	118
15	Enhancement of thermoelectric performance of PEDOT:PSS films by post-treatment with a superacid. RSC Advances, 2018, 8, 18334-18340.	3.6	118
16	nâ€Type SnSe ₂ Orientedâ€Nanoplateâ€Based Pellets for High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1702167.	19.5	103
17	High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. Joule, 2020, 4, 159-175.	24.0	103
18	Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method. Journal of Materials Chemistry C, 2017, 5, 1255-1260.	5.5	101

#	Article	IF	CITATIONS
19	A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS. Journal of Materials Chemistry C, 2018, 6, 5122-5131.	5.5	100
20	High Thermoelectric Performance in Polycrystalline SnSe Via Dualâ€Doping with Ag/Na and Nanostructuring With Ag ₈ SnSe ₆ . Advanced Energy Materials, 2019, 9, 1803072.	19.5	98
21	Poly(acrylate) with a tetraphenylethene pendant with aggregation-induced emission (AIE) characteristics: highly stable AIE-active polymer nanoparticles for effective detection of nitro compounds. Polymer Chemistry, 2014, 5, 5628.	3.9	94
22	High Thermoelectric Performance in Supersaturated Solid Solutions and Nanostructured nâ€Type PbTe–GeTe. Advanced Functional Materials, 2018, 28, 1801617.	14.9	92
23	Synthesis, Electronic, and Emission Spectroscopy, and Electrochromic Characterization of Azuleneâ^'Fluorene Conjugated Oligomers and Polymers. Macromolecules, 2009, 42, 5534-5544.	4.8	91
24	Organic–inorganic nanocomposites from cubic silsesquioxane epoxides: direct characterization of interphase, and thermomechanical properties. Polymer, 2005, 46, 7018-7027.	3.8	90
25	Synthesis and Self-Assembly of Difunctional Halogen-Bonding Molecules:Â A New Family of Supramolecular Liquid-Crystalline Polymers. Macromolecules, 2005, 38, 3554-3557.	4.8	87
26	Electrospun aggregation-induced emission active POSS-based porous copolymer films for detection of explosives. Chemical Communications, 2014, 50, 13785-13788.	4.1	87
27	Thermal degradation of electrical conductivity of polyacrylic acid doped polyaniline: effect of molecular weight of the dopants. Synthetic Metals, 2003, 138, 429-440.	3.9	84
28	Diversity of electron acceptor groups in donor–acceptor type electrochromic conjugated polymers. Solar Energy Materials and Solar Cells, 2019, 197, 32-75.	6.2	80
29	Tuning the aspect ratio of NH ₂ -MIL-53(Al) microneedles and nanorodsvia coordination modulation. CrystEngComm, 2013, 15, 654-657.	2.6	78
30	Recent advances in conducting poly(3,4-ethylenedioxythiophene):polystyrene sulfonate hybrids for thermoelectric applications. Journal of Materials Chemistry C, 2018, 6, 8858-8873.	5.5	78
31	Modulation of the doping level of PEDOT:PSS film by treatment with hydrazine to improve the Seebeck coefficient. RSC Advances, 2020, 10, 1786-1792.	3.6	77
32	Thermoelectric materials and transport physics. Materials Today Physics, 2021, 21, 100519.	6.0	77
33	A thermally stable and reversible microporous hydrogen-bonded organic framework: aggregation induced emission and metal ion-sensing properties. Journal of Materials Chemistry C, 2015, 3, 11874-11880.	5.5	76
34	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe- <i>x</i> GeTe with Midgap States. Journal of the American Chemical Society, 2019, 141, 16169-16177.	13.7	76
35	Modulating high-energy visible light absorption to attain neutral-state black electrochromic polymers. Journal of Materials Chemistry C, 2016, 4, 28-32.	5.5	75
36	Aggregation induced emission based fluorescence pH and temperature sensors: probing polymer interactions in poly(N-isopropyl acrylamide-co-tetra(phenyl)ethene acrylate)/poly(methacrylic acid) interpenetrating polymer networks. Journal of Materials Chemistry C, 2015, 3, 5490-5498.	5.5	72

#	Article	IF	Citations
37	Enhanced Thermoelectric Performance of PEDOT:PSS Films by Sequential Postâ€Treatment with Formamide. Macromolecular Materials and Engineering, 2018, 303, 1700429.	3.6	69
38	Inverseâ€Electronâ€Demand Diels–Alder Reactions: Principles and Applications. Chemistry - an Asian Journal, 2017, 12, 2142-2159.	3.3	66
39	Effects of fluorination on the electrochromic performance of benzothiadiazole-based donor–acceptor copolymers. Journal of Materials Chemistry C, 2015, 3, 5589-5597.	5.5	65
40	Recent Advances in Aggregation-Induced Emission Chemosensors for Anion Sensing. Molecules, 2019, 24, 2711.	3.8	65
41	Enhanced Electrochromic Switching in Multilayer Thin Films of Polyaniline-Tethered Silsesquioxane Nanocage. Chemistry of Materials, 2009, 21, 4434-4441.	6.7	64
42	Low Bandgap Conjugated Polymers Based on a Nature-Inspired Bay-Annulated Indigo (BAI) Acceptor as Stable Electrochromic Materials. ACS Sustainable Chemistry and Engineering, 2016, 4, 2797-2805.	6.7	64
43	Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 18880-18890.	10.3	61
44	Electrofluorochromic detection of cyanide anions using a benzothiadiazole-containing conjugated copolymer. Chemical Communications, 2014, 50, 655-657.	4.1	58
45	Black-to-transmissive electrochromism of azulene-based donor–acceptor copolymers complemented by poly(4-styrene sulfonic acid)-doped poly(3,4-ethylenedioxythiophene). Organic Electronics, 2013, 14, 2748-2755.	2.6	57
46	Mosaicâ€Structured Cobalt Nickel Thiophosphate Nanosheets Incorporated Nâ€doped Carbon for Efficient and Stable Electrocatalytic Water Splitting. Advanced Functional Materials, 2018, 28, 1805075.	14.9	57
47	Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: Facile synthesis and enhancement of hydrophobicity of their polymer blends. Journal of Materials Chemistry, 2009, 19, 4740.	6.7	56
48	Synthesis and Self-Assembly of Donorâ^'Spacerâ^'Acceptor Molecules. Liquid Crystals Formed by Single-Component "Complexes―via Intermolecular Hydrogen-Bonding Interaction. Macromolecules, 2005, 38, 1684-1690.	4.8	54
49	High-Contrast Electrochromic Thin Films via Layer-by-Layer Assembly of Starlike and Sulfonated Polyaniline. Chemistry of Materials, 2010, 22, 6085-6091.	6.7	54
50	Solution-processable blue-to-transmissive electrochromic benzotriazole-containing conjugated polymers. Polymer Chemistry, 2013, 4, 4663.	3.9	54
51	Alternating Conjugated and Transannular Chromophores:  Tunable Property of Fluorene-Paracyclophane Copolymers via Transannular Ï€â°Ï€ Interaction. Organic Letters, 2003, 5, 2765-2768.	4.6	53
52	Triphenylethylenyl-based donor–acceptor–donor molecules: studies on structural and optical properties and AIE properties for cyanide detection. Journal of Materials Chemistry C, 2017, 5, 12194-12203.	5.5	53
53	High thermoelectric performance enabled by convergence of nested conduction bands in Pb7Bi4Se13 with low thermal conductivity. Nature Communications, 2021, 12, 4793.	12.8	53
54	Strategies to reduce the flammability of organic phase change Materials: A review. Solar Energy, 2022, 231, 115-128.	6.1	52

#	Article	IF	CITATIONS
55	Novel Glassy Tetra(N-alkyl-3-bromocarbazole-6-yl)silanes as Building Blocks for Efficient and Nonaggregating Blue-Light-Emitting Tetrahedral Materials. Organic Letters, 2005, 7, 2829-2832.	4.6	51
56	Synthesis of Ultrahighly Electron-Deficient Pyrrolo[3,4- <i>d</i>]pyridazine-5,7-dione by Inverse Electron Demand Diels–Alder Reaction and Its Application as Electrochromic Materials. Organic Letters, 2014, 16, 6386-6389.	4.6	51
57	Poly(triphenyl ethene) and poly(tetraphenyl ethene): synthesis, aggregation-induced emission property and application as paper sensors for effective nitro-compounds detection. Polymer Chemistry, 2016, 7, 6309-6317.	3.9	50
58	Gateâ€Tunable Polar Optical Phonon to Piezoelectric Scattering in Fewâ€Layer Bi ₂ O ₂ Se for Highâ€Performance Thermoelectrics. Advanced Materials, 2021, 33, e2004786.	21.0	48
59	Bottom-Up Engineering Strategies for High-Performance Thermoelectric Materials. Nano-Micro Letters, 2021, 13, 119.	27.0	48
60	Application of phase change materials in building components and the use of nanotechnology for its improvement. Energy and Buildings, 2022, 262, 112018.	6.7	47
61	Tetraphenylethene (TPE) modified polyhedral oligomeric silsesquioxanes (POSS): unadulterated monomer emission, aggregation-induced emission and nanostructural self-assembly modulated by the flexible spacer between POSS and TPE. Chemical Communications, 2016, 52, 12478-12481.	4.1	46
62	Asymmetric-Layered Tin Thiophosphate: An Emerging 2D Ternary Anode for High-Performance Sodium Ion Full Cell. ACS Nano, 2018, 12, 12902-12911.	14.6	45
63	Alternating Aromatic and Transannular Chromophores with and without Linker:Â Effect of Transannular πⴴπ Interaction on the Optical Property of Dithiaparacyclophane-based Copolymers. Macromolecules, 2004, 37, 3546-3553.	4.8	43
64	Effect of Transannular Ï€â^'Ï€ Interaction on Emission Spectral Shift and Fluorescence Quenching in Dithia[3.3]paracyclophaneâ°'Fluorene Copolymers. Macromolecules, 2006, 39, 7277-7285.	4.8	43
65	Electrochemically controlled release of molecular guests from redox responsive polymeric multilayers and devices. European Polymer Journal, 2013, 49, 2477-2484.	5.4	43
66	Proquinoidal-Conjugated Polymer as an Effective Strategy for the Enhancement of Electrical Conductivity and Thermoelectric Properties. Chemistry of Materials, 2019, 31, 8543-8550.	6.7	43
67	Electroluminochromic Materials: From Molecules to Polymers. Polymers, 2019, 11, 98.	4.5	43
68	High Spin Pro-Quinoid Benzo[1,2-c;4,5-c′]bisthiadiazole Conjugated Polymers for High-Performance Solution-Processable Polymer Thermoelectrics. , 2020, 2, 147-152.		43
69	General Suzuki Coupling of Heteroaryl Bromides by Using Triâ€xi>tertàê€butylphosphine as a Supporting Ligand. European Journal of Organic Chemistry, 2014, 2014, 5901-5905.	2.4	41
70	Towards <i>meso</i> êEster BODIPYs with Aggregationâ€Induced Emission Properties: The Effect of Substitution Positions. Chemistry - an Asian Journal, 2015, 10, 1631-1634.	3.3	41
71	Thermally Stable Blue-Light-Emitting Hybrid Organicâ^'lnorganic Polymers Derived from Cyclotriphosphazene. Macromolecules, 2008, 41, 9624-9636.	4.8	40
72	Starâ€ike polyurethane hybrids with functional cubic silsesquioxanes: Preparation, morphology, and thermomechanical properties. Journal of Polymer Science Part A, 2009, 47, 4602-4616.	2.3	39

#	Article	IF	CITATIONS
73	Organic–inorganic hybrid liquid crystals derived from octameric silsesquioxanes. Effect of the peripheral groups in mesogens on the formation of liquid crystals. Journal of Materials Chemistry, 2011, 21, 5248.	6.7	39
74	Organometallic polymeric carriers for redox triggered release of molecular payloads. Journal of Materials Chemistry, 2012, 22, 6429.	6.7	39
75	Poly(nickel-ethylenetetrathiolate) and Its Analogs: Theoretical Prediction of High-Performance Doping-Free Thermoelectric Polymers. Journal of the American Chemical Society, 2018, 140, 13200-13204.	13.7	39
76	High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu ₂ SnSe ₃ . Advanced Energy Materials, 2021, 11, 2100661.	19.5	39
77	A Comparative Study on Luminescent Copolymers of Fluorene and Carbazole with Conjugated or δ-Si Interrupted Structures:Â Steric Effects. Macromolecules, 2006, 39, 1397-1402.	4.8	38
78	Effective enhancement of thermoelectric and mechanical properties of germanium telluride <i>via</i> rhenium-doping. Journal of Materials Chemistry C, 2020, 8, 16940-16948.	5 . 5	38
79	Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor. Journal of Materials Chemistry A, 2021, 9, 23335-23344.	10.3	38
80	Transparent flexible thin-film p–n junction thermoelectric module. Npj Flexible Electronics, 2020, 4, .	10.7	37
81	High-performance PEDOT:PSS-based thermoelectric composites. Composites Communications, 2021, 27, 100877.	6.3	37
82	Supergluing MOF liquid marbles. Chemical Communications, 2013, 49, 493-495.	4.1	36
83	Pyrrolophthalazine dione (PPD)-based donor–acceptor polymers as high performance electrochromic materials. Polymer Chemistry, 2015, 6, 1487-1494.	3.9	36
84	Improved Alignment of PEDOT:PSS Induced by in-situ Crystallization of "Green―Dimethylsulfone Molecules to Enhance the Polymer Thermoelectric Performance. Frontiers in Chemistry, 2019, 7, 783.	3.6	36
85	Enhanced Thermoelectric Performance of Nanocrystalline Indium Tin Oxide Pellets by Modulating the Density and Nanoporosity Via Spark Plasma Sintering. ACS Applied Nano Materials, 2020, 3, 10156-10165.	5.0	35
86	Improved Thermoelectric Properties and Environmental Stability of Conducting PEDOT:PSS Films Post-treated With Imidazolium Ionic Liquids. Frontiers in Chemistry, 2019, 7, 870.	3.6	35
87	Origin of High Thermoelectric Performance in Earth-Abundant Phosphide–Tetrahedrite. ACS Applied Materials & Interfaces, 2020, 12, 9150-9157.	8.0	35
88	Realizing zT Values of 2.0 in Cubic GeTe. ChemNanoMat, 2021, 7, 476-482.	2.8	35
89	Designing hybrid architectures for advanced thermoelectric materials. Materials Chemistry Frontiers, 2017, 1, 2457-2473.	5.9	34
90	Strategies and concepts in n-doped conjugated polymer thermoelectrics. Journal of Materials Chemistry A, 2021, 9, 5149-5163.	10.3	34

#	Article	IF	Citations
91	Synthesis and characterisation of mainâ€chain hydrogenâ€bonded supramolecular liquid crystalline complexes formed by azoâ€containing compounds. Liquid Crystals, 2008, 35, 241-251.	2.2	33
92	Tuning Omniphobicity via Morphological Control of Metal–Organic Framework Functionalized Surfaces. Journal of the American Chemical Society, 2013, 135, 16272-16275.	13.7	33
93	4,9-Dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-embedded electrochromic conjugated polymers with high coloration efficiency and fast coloration time. Solar Energy Materials and Solar Cells, 2015, 136, 92-99.	6.2	33
94	Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction. Organic Letters, 2015, 17, 4168-4171.	4.6	33
95	Enhanced thermoelectric performance of poly(3,4â€ethylenedioxythiophene):poly(4â€styrenesulfonate) (PEDOT:PSS) with longâ€term humidity stability via sequential treatment with trifluoroacetic acid. Polymer International, 2020, 69, 84-92.	3.1	33
96	Water-dispersible conducting polyazulene and its application in thermoelectrics. Chemical Communications, 2020, 56, 9388-9391.	4.1	33
97	Rapid UV-Curable Form-Stable Polyethylene-Glycol-Based Phase Change Material. ACS Applied Polymer Materials, 2022, 4, 2747-2756.	4.4	33
98	Redox-controlled release of molecular payloads from multilayered organometallic polyelectrolyte films. Journal of Materials Chemistry B, 2013, 1, 828-834.	5.8	32
99	Orbital-Engineering-Based Screening of π-Conjugated d ⁸ Transition-Metal Coordination Polymers for High-Performance n-Type Thermoelectric Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35306-35315.	8.0	32
100	Self-Organization of PEDOT:PSS Induced by Green and Water-Soluble Organic Molecules. Journal of Physical Chemistry C, 2019, 123, 9745-9755.	3.1	32
101	Azulene in Polymers and Their Properties. Chemistry - an Asian Journal, 2020, 15, 1904-1915.	3.3	32
102	Synthesis and characterization of soluble polyimides derived from [1,1?;4?,1?]terphenyl-2?,5?-diol and biphenyl-2,5-diol. Journal of Polymer Science Part A, 2001, 39, 2998-3007.	2.3	31
103	Hydrogen bondâ€directed selfâ€assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase. Journal of Polymer Science Part A, 2008, 46, 4691-4703.	2.3	31
104	Synthesis and self-assembly of halogen-bond donor–spacer–hydrogen-bond donor molecules: polymeric liquid crystals induced by combination of intermolecular halogen- and hydrogen-bonding interactions. Liquid Crystals, 2013, 40, 185-196.	2.2	31
105	Effects of Chemical Composition, Film Thickness, and Morphology on the Electrochromic Properties of Donor–Acceptor Conjugated Copolymers Based on Diketopyrrolopyrrole. ChemPlusChem, 2015, 80, 1298-1305.	2.8	31
106	Recent advances in nanotechnology-based functional coatings for the built environment. Materials Today Advances, 2022, 15, 100270.	5.2	30
107	Sulfonic Acid- and Lithium Sulfonate-Grafted Poly(Vinylidene Fluoride) Electrospun Mats As Ionic Liquid Host for Electrochromic Device and Lithium-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16548-16557.	8.0	29
108	Effect of substituents in sulfoxides on the enhancement of thermoelectric properties of PEDOT:PSS: experimental and modelling evidence. Molecular Systems Design and Engineering, 2020, 5, 976-984.	3.4	29

#	Article	IF	CITATIONS
109	Low band-gap diketopyrrolopyrrole-containing polymers for near infrared electrochromic and photovoltaic applications. Journal of Polymer Science Part A, 2015, 53, 1287-1295.	2.3	28
110	Ultrahigh electron-deficient pyrrolo-acenaphtho-pyridazine-dione based donor–acceptor conjugated polymers for electrochromic applications. Polymer Chemistry, 2015, 6, 7570-7579.	3.9	28
111	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie - International Edition, 2021, 60, 268-273.	13.8	28
112	Triphenylethylene- and Tetraphenylethylene-Functionalized 1,3-Bis(pyrrol-2-yl)squaraine Dyes: Synthesis, Aggregation-Caused Quenching to Aggregation-Induced Emission, and Thiol Detection. ACS Omega, 2018, 3, 16424-16435.	3.5	27
113	Triazine derivatives as organic phase change materials with inherently low flammability. Journal of Materials Chemistry A, 2022, 10, 3633-3641.	10.3	27
114	Towards modulating the colour hues of isoindigo-based electrochromic polymers through variation of thiophene-based donor groups. Polymer Chemistry, 2022, 13, 967-981.	3.9	27
115	Synthesis of O,O′-dipalmitoyl chitosan and its amphiphilic properties and capability of cholesterol absorption. Carbohydrate Polymers, 2005, 60, 229-233.	10.2	25
116	Upcycling Silicon Photovoltaic Waste into Thermoelectrics. Advanced Materials, 2022, 34, e2110518.	21.0	25
117	Designing good compatibility factor in segmented Bi0.5Sb1.5Te3 – GeTe thermoelectrics for high power conversion efficiency. Nano Energy, 2022, 96, 107147.	16.0	24
118	Valence Disproportionation of GeS in the PbS Matrix Forms Pb ₅ Ge ₅ S ₁₂ Inclusions with Conduction Band Alignment Leading to High n-Type Thermoelectric Performance. Journal of the American Chemical Society, 2022, 144, 7402-7413.	13.7	24
119	Syntheses of chitin-based imprinting polymers and their binding properties for cholesterol. Carbohydrate Research, 2011, 346, 495-500.	2.3	23
120	Thermal stability of ionic liquid-loaded electrospun poly(vinylidene fluoride) membranes and its influences on performance of electrochromic devices. Journal of Membrane Science, 2011, 376, 283-289.	8.2	23
121	Solution-processable multicolored dithienothiophene-based conjugated polymers for electrochromic applications. European Polymer Journal, 2013, 49, 2446-2456.	5.4	23
122	One-Dimensional Nanostructure Engineering of Conducting Polymers for Thermoelectric Applications. Applied Sciences (Switzerland), 2019, 9, 1422.	2.5	23
123	Achieving Enhanced Thermoelectric Performance in Multiphase Materials. Accounts of Materials Research, 2022, 3, 237-246.	11.7	23
124	Enhancement of electrochromic contrast by tethering polyaniline onto cyclotriphosphazene. European Polymer Journal, 2009, 45, 772-778.	5.4	22
125	Electrofluorochromic Detection of Cyanide Anions Using a Nanoporous Polymer Electrode and the Detection Mechanism. Chemistry - A European Journal, 2014, 20, 13226-13233.	3.3	22
126	Highly thermally stable cyclotriphosphazene based perfluoropolyether lubricant oil. Tribology International, 2015, 90, 257-262.	5.9	22

#	Article	IF	CITATIONS
127	Theoretical search for high-performance thermoelectric donor–acceptor copolymers: the role of super-exchange couplings. Journal of Materials Chemistry A, 2020, 8, 21852-21861.	10.3	22
128	High-performance & Department of the mally stable n-type polymer thermoelectrics based on a benzyl viologen radical cation-doped ladder-type conjugated polymer. Journal of Materials Chemistry A, 2021, 9, 11787-11793.	10.3	22
129	Intermolecular Interaction in Multicomponent Supramolecular Complexes through Hydrogen-Bonding Association. Macromolecules, 2002, 35, 8846-8851.	4.8	21
130	Fluorinated polyhedral oligomeric silsesquioxanes. RSC Advances, 2015, 5, 4547-4553.	3.6	21
131	Carboxylic Acid Directed C–H Arylation of Azulene. Organic Letters, 2020, 22, 5009-5013.	4.6	21
132	Sodium formaldehyde sulfoxylate, an ionic-type, water-soluble reducing reagent to effectively improve seebeck coefficient of PEDOT:PSS film. Organic Electronics, 2020, 81, 105682.	2.6	21
133	Variable Ion Selectivity in [n.3.3](1,3,5)Crownophanes: The "Breathing―Process. Organic Letters, 2003, 5, 2781-2784.	4.6	20
134	Synthesis of main-chain hydrogen-bonded supramolecular liquid crystalline complexes: The effects of spacer on thermal behavior of mesophase. Journal of Polymer Science Part A, 2005, 43, 4731-4743.	2.3	20
135	Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. Materials Chemistry Frontiers, 2018, 2, 331-337.	5.9	20
136	Flexible elemental thermoelectrics with ultra-high power density. Materials Today Energy, 2022, 25, 100964.	4.7	20
137	A highly flexible form-stable silicone-octadecane PCM composite for heat harvesting. Materials Today Advances, 2022, 14, 100227.	5.2	20
138	Molecular assembly of dithiaparacyclophanes mediated by non-covalent X…X, X…Y and C–H…X (X,) Tj ET	Q <u>qQ</u> 00r	gBT ₁₉ /Overlock
139	lonofluorochromic Nanoparticles Derived from Octapyrene-Modified Polyhedral Oligomeric Silsesquioxane Organic Frameworks for Fluoride-Ion Detection. ACS Applied Nano Materials, 2019, 2, 470-478.	5.0	18
140	Binary treatment of PEDOT:PSS films with nitric acid and imidazolium-based ionic liquids to improve the thermoelectric properties. Materials Advances, 2020, 1, 3233-3242.	5.4	18
141	The benzyl viologen radical cation: an effective n-dopant for poly(naphthalenediimide-bithiophene). Journal of Materials Chemistry A, 2020, 8, 18916-18924.	10.3	18
142	Synthesis, Complexation, and Supramolecular Assembly of 21,30-Dithia-17,25-dimethyl-1,4,7,10,13-pentaoxa[13.3.3](1,2,6)cyclophaneâ€. Organic Letters, 2002, 4, 3211-3214.	4.6	17
143	Electrochromic π-Conjugated Copolymers Derived from Azulene, Fluorene, and Dialkyloxybenzothiadiazole. Australian Journal of Chemistry, 2013, 66, 1048.	0.9	17
144	Enhancement of Thermoelectric Performance in CuSbSe ₂ Nanoplateâ€Based Pellets by Texture Engineering and Carrier Concentration Optimization. Small, 2018, 14, e1803092.	10.0	17

#	Article	IF	CITATIONS
145	Functionalized POSS-Based Hybrid Composites. , 2019, , 179-210.		17
146	Disassembly of redox responsive poly(ferrocenylsilane) multilayers: The effect of blocking layers, supporting electrolyte and polyion molar mass. Journal of Colloid and Interface Science, 2013, 405, 256-261.	9.4	16
147	Engineering polydimethylsiloxane with two-dimensional graphene oxide for an extremely durable superhydrophobic fabric coating. RSC Advances, 2016, 6, 66834-66840.	3.6	16
148	Solutionâ€Processable Copolymers Based on Triphenylamine and 3,4â€Ethylenedioxythiophene: Facile Synthesis and Multielectrochromism. Macromolecular Rapid Communications, 2020, 41, e2000156.	3.9	16
149	Improved <i>zT</i> in Nb ₅ Ge ₃ –GeTe thermoelectric nanocomposite. Nanoscale, 2022, 14, 410-418.	5.6	16
150	Complexation behavior and crystal structure of a dithia[16.3.3](1,2,6)cyclophane: a novel one-dimensional coordination polymer with perchlorate anions as linkers. Tetrahedron Letters, 2002, 43, 9199-9202.	1.4	15
151	Cholesterol-imprinted polymer receptor prepared by a hybrid imprinting method. Polymer International, 2005, 54, 1268-1274.	3.1	15
152	Red-to-black electrochromism of 4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-embedded conjugated polymers. Journal of Materials Science, 2015, 50, 5856-5864.	3.7	15
153	Effective ionic Seebeck component suppression in mixed ion-electron conductor via chemical treatment. Organic Electronics, 2019, 69, 7-12.	2.6	15
154	Perfluoropolyether/poly(ethylene glycol) triblock copolymers with controllable self-assembly behaviour for highly efficient anti-bacterial materials. RSC Advances, 2015, 5, 64170-64179.	3.6	13
155	Benzyl viologen radical cation: an effective n-dopant for poly(perylenediimide-bithiophene). Journal of Materials Chemistry C, 2020, 8, 17261-17268.	5.5	13
156	Modulating the Properties of Azuleneâ€containing Polymers Through Functionalization at the 2â€Position of Azulene. Chemistry - an Asian Journal, 2020, 15, 2505-2512.	3.3	13
157	Photoresponsive Thermoelectric Materials Derived from Fullerene-C ₆₀ PEDOT Hybrid Polymers. ACS Applied Energy Materials, 2020, 3, 6726-6734.	5.1	13
158	Facile Synthesis of Solubilizing a Group-Free, Solution-Processable <i>p</i> -Type Ladder Conjugated Polymer and Its Thermoelectric Properties. ACS Macro Letters, 2022, 11, 110-115.	4.8	13
159	Gallium-Doped Zinc Oxide Nanostructures for Tunable Transparent Thermoelectric Films. ACS Applied Nano Materials, 2022, 5, 8631-8639.	5.0	13
160	Blends of polyimide and dodecylbenzene sulfonic acid-doped polyaniline: Effects of polyimide structure on electrical conductivity and its thermal degradation. Synthetic Metals, 2006, 156, 117-123.	3.9	12
161	Solution-Based Synthesis and Processing of Metal Chalcogenides for Thermoelectric Applications. Applied Sciences (Switzerland), 2019, 9, 1511.	2.5	12
162	Synthesis of Conjugated Polymers via Transition Metal Catalysed Câ^'H Bond Activation. Chemistry - an Asian Journal, 2021, 16, 2896-2919.	3.3	12

#	Article	IF	CITATIONS
163	Redox responsive nanotubes from organometallic polymers by template assisted layer by layer fabrication. Nanoscale, 2013, 5, 11692.	5.6	10
164	The Role of Electrostatic Interaction between Free Charge Carriers and Counterions in Thermoelectric Power Factor of Conducting Polymers: From Crystalline to Polycrystalline Domains. Advanced Theory and Simulations, 2020, 3, 2000015.	2.8	10
165	Diketopyrrolopyrrole-Based Low-Bandgap Conjugated Polymers with Siloxane Side Chains for Electrochromic Applications. Australian Journal of Chemistry, 2016, 69, 403.	0.9	9
166	Enhancing the electrochromic performance of conjugated polymers using thermal nanoimprint lithography. RSC Advances, 2017, 7, 49119-49124.	3.6	9
167	Synthesis and properties of cyclotriphosphazene and perfluoropolyetherâ€based lubricant with polar functional groups. Lubrication Science, 2017, 29, 31-42.	2.1	9
168	Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation. Crystals, 2022, 12, 307.	2.2	9
169	Solution-processable low-bandgap 3-fluorothieno [3,4-b] thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. RSC Advances, 2015, 5, 96328-96335.	3.6	8
170	A Systematic Approach for Semiconductor Half-Heusler. Frontiers in Materials, 2021, 8, .	2.4	8
171	Low band-gap weak donor–strong acceptor conjugated polymer for organic solar cell. RSC Advances, 2015, 5, 98876-98879.	3.6	7
172	Cyclization of Tetraaryl-Substituted Benzoquinones and Hydroquinones through the Scholl Reaction. Journal of Organic Chemistry, 2016, 81, 9219-9226.	3.2	7
173	Control of morphology and performance of diketopyrrolopyrrole-based electrochromic polymers using solvent vapor annealing. Journal of Polymer Research, 2018, 25, 1.	2.4	7
174	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie, 2021, 133, 272-277.	2.0	7
175	Thermoelectric Performances of n-Doped Ladder-Type Conjugated Polymers Using Various Viologen Radical Cations. ACS Applied Polymer Materials, 2021, 3, 5596-5603.	4.4	7
176	Low relative dielectric permittivities of polyimides and copolyimides derived from non-coplanar diamines and 4,4′-(hexafluoroisopropyl)diphthalic anhydride. Plastics, Rubber and Composites, 2002, 31, 295-299.	2.0	6
177	TOFâ€SIMS analysis of media lubricant under laser irradiation for HAMR application. Surface and Interface Analysis, 2011, 43, 406-409.	1.8	6
178	Thermally stable glassy luminescent cyclotriphosphazenes. European Polymer Journal, 2013, 49, 2404-2414.	5.4	6
179	Dithienothiopheneâ€Based Triphenylamineâ€Containing Branched Copolymers for Electrochromic Applications. ChemPlusChem, 2015, 80, 1306-1311.	2.8	5
180	Polaron Delocalization Dependence of the Conductivity and the Seebeck Coefficient in Doped Conjugated Polymers. Journal of Physical Chemistry B, 2022, 126, 2073-2085.	2.6	5

#	Article	IF	CITATIONS
181	A Unique Spherical Molecular Host withD2dSymmetry. A Novel Intramolecular Kinetic Equilibrium in Metal Ion Complexation between Two Crown Ethers. Organic Letters, 2002, 4, 3911-3914.	4.6	4
182	Electron n-doping of a highly electron-deficient chlorinated benzodifurandione-based oligophenylene vinylene polymer using benzyl viologen radical cations. Materials Chemistry Frontiers, 2021, 5, 6182-6191.	5.9	4
183	Highly Thermally Resistant Polyhedral Oligomeric Silsesquioxanes Lubricating Oil Prepared via a Thiol-Ene Click Reaction. Science of Advanced Materials, 2014, 6, 1553-1561.	0.7	4
184	Laser irradiation effect on the damage of lubricant films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 03H136.	1.2	3
185	Physical Intuition to Improve Electronic Properties of Thermoelectrics. Frontiers in Physics, 2021, 9, .	2.1	3
186	Rational Proteomic Analysis of a New Domesticated Klebsiella pneumoniae x546 Producing 1,3-Propanediol. Frontiers in Microbiology, 2021, 12, 770109.	3.5	3
187	Synthesis and Halochromic Properties of 1,2,6â€Tri†and 1,2,3,6â€Tetraâ€aryl Azulenes. ChemPlusChem, 2021, 86, 1116-1122.	2.8	2
188	Conjugated polymers for electrochromic applications. , 2022, , 539-573.		2
189	Supramolecular (Hydrogen-Bonded and Halogen-Bonded) Liquid Crystalline Polymers. , 2016, , 391-409.		1
190	Atomistic simulation of the smectic a mesophase induced by halogen bond. Journal of Molecular Liquids, 2020, 319, 113731.	4.9	1
191	Polymer-POSS hybrid materials as fire retardants. , 2021, , 305-332.		1
192	Manufacturing of POSS-polymer nanocomposites. , 2021, , 27-51.		1
193	AIE-active polymers for explosive detection. , 2022, , 555-582.		0