List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11675343/publications.pdf Version: 2024-02-01

		76326	33894
192	11,144	40	99
papers	citations	h-index	g-index
192	192	192	7543
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sub-mA/cm ² Dark Current Density, Buffer-Less Germanium (Ge) Photodiodes on a 200-mm Ge-on-Insulator Substrate. IEEE Transactions on Electron Devices, 2021, 68, 1730-1737.	3.0	10
2	PIC-integrable, uniformly tensile-strained Ge-on-insulator photodiodes enabled by recessed SiN _x stressor. Photonics Research, 2021, 9, 1255.	7.0	6
3	Engineering Low Dark Current Density for Ge-on-Si Photodiodes. , 2021, , .		1
4	Unpredicted Internal Geometric Reconfiguration of an Enclosed Space Formed by Heteroepitaxy. Nano Letters, 2020, 20, 540-545.	9.1	6
5	Effectiveness of InGaAs/GaAs superlattice dislocation filter layers epitaxially grown on 200 mm Si wafers with and without Ge buffers. Semiconductor Science and Technology, 2020, 35, 095036.	2.0	8
6	Trapping threading dislocations in germanium trenches on silicon wafer. Journal of Crystal Growth, 2020, 543, 125701.	1.5	4
7	Strained Ge _{0.99} Si _{0.01} Modulator Arrays for Integrated Broadband Modulation. , 2020, , .		1
8	Germanium Photodetectors with 60-nm Absorption Coverage Extension and â^¼2× Quantum Efficiency Enhancement across L-Band. , 2019, , .		0
9	Micro-Prism Spectrum Splitting Optics for Lateral-Arrayed Multi Junction Micro CPV. , 2019, , .		1
10	Germanium Photodetectors with 60-nm Absorption Coverage Extension and â^1⁄42× Quantum Efficiency Enhancement across L-Band. , 2019, , .		1
11	Amorphous Silicon in Microphotonics. Springer Handbooks, 2019, , 1483-1493.	0.6	1
12	Compact spectrum splitter for laterally arrayed multi-junction concentrator photovoltaic modules. Optics Letters, 2019, 44, 3274.	3.3	7
13	Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photonics Research, 2019, 7, 1279.	7.0	33
14	Uniformly Tensile-strained Germanium Enabled by a Recessed Nitride Stressor for Efficient Integrated Photodetectors at Longer Wavelengths. , 2019, , .		0
15	High level active <i>n</i> + doping of strained germanium through co-implantation and nanosecond pulsed laser melting. Journal of Applied Physics, 2018, 123, .	2.5	12
16	Improved retention of phosphorus donors in germanium using a non-amorphizing fluorine co-implantation technique. Journal of Applied Physics, 2018, 123, 161524.	2.5	6
17	Germanium Photodetector with Enhanced Photo-Response at the L-Band and Beyond for Integrated Photonic Applications. , 2018, , .		0
18	Performance of AlGaInP LEDs on silicon substrates through low threading dislocation density (TDD) germanium buffer layer. Semiconductor Science and Technology, 2018, 33, 104004.	2.0	5

#	Article	IF	CITATIONS
19	Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics, 2018, 7, 1461-1467.	6.0	16
20	High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform: publisher's note. Photonics Research, 2018, 6, 46.	7.0	3
21	Robust cavity soliton formation with hybrid dispersion. Photonics Research, 2018, 6, 647.	7.0	9
22	High-performance AlGaInP light-emitting diodes integrated on silicon through a superior quality germanium-on-insulator. Photonics Research, 2018, 6, 290.	7.0	8
23	Broadband athermal waveguides and resonators for datacom and telecom applications. Photonics Research, 2018, 6, 987.	7.0	18
24	A self-aligned dry etching method for mechanical strain enhancement of germanium and its uniformity improvement for photonic applications. , 2018, , .		4
25	Broadband athermal waveguides and devices for datacom and telecom applications. , 2018, , .		2
26	Agile generation of microresonator-based frequency combs without pump detuning and local temperature controlling. , 2018, , .		0
27	Two-octave dispersion flattening with five zero-dispersion wavelengths in the mid-IR. , 2018, , .		1
28	Metalorganic chemical vapor deposition-regrown Ga-rich InGaP films on SiGe virtual substrates for Si-based III-V optoelectronic device applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	2
29	Strategies for increased donor electrical activity in germanium (opto-) electronic materials: a review. International Materials Reviews, 2017, 62, 334-347.	19.3	7
30	Hetero-epitaxy of high quality germanium film on silicon substrate for optoelectronic integrated circuit applications. Journal of Materials Research, 2017, 32, 4025-4040.	2.6	15
31	Germanium-on-insulator virtual substrate for InGaP epitaxy. Materials Science in Semiconductor Processing, 2017, 70, 17-23.	4.0	0
32	Control wafer bow of InGaP on 200 mm Si by strain engineering. Semiconductor Science and Technology, 2017, 32, 125013.	2.0	3
33	Germanium-on-insulator virtual substrate for InGaP epitaxy. Materials Science in Semiconductor Processing, 2017, 58, 15-21.	4.0	5
34	Extension of Germanium-on-insulator optical absorption edge using CMOS-compatible silicon nitride stressor. , 2017, , .		4
35	Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses. Optics Express, 2017, 25, 16116.	3.4	28
36	Direct bandgap photoluminescence from n-type indirect GaInP alloys. Photonics Research, 2017, 5, 239.	7.0	6

JURGEN MICHEL

#	Article	IF	CITATIONS
37	Robust generation of frequency combs in a microresonator with strong and narrowband loss. Photonics Research, 2017, 5, 552.	7.0	6
38	High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform. Photonics Research, 2017, 5, 702.	7.0	52
39	Loss reduction of silicon-on-insulator waveguides for deep mid-infrared applications. Optics Letters, 2017, 42, 3454.	3.3	16
40	Athermal and flat-topped silicon Mach-Zehnder filters. Optics Express, 2016, 24, 29577.	3.4	25
41	Epitaxy and characterization of GaInP/AlInP light-emitting diodes on As-doped Ge/Si substrates. Optics Express, 2016, 24, 23129.	3.4	3
42	Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths. Optics Letters, 2016, 41, 4939.	3.3	41
43	Mid-infrared supercontinuum generation in a low-dispersion Ge-on-Si waveguide using sub-picosecond pulses. , 2016, , .		0
44	Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer. AIP Advances, 2016, 6, .	1.3	47
45	Low-loss SOI waveguides at Mid-IR wavelengths (4800 nm) using the second-order TE mode. , 2016, , .		0
46	Effect of a breather soliton in Kerr frequency combs on optical communication systems. Optics Letters, 2016, 41, 1764.	3.3	6
47	Robust polarization-insensitive strip-slot waveguide mode converter based on symmetric multimode interference. Optics Express, 2016, 24, 7347.	3.4	32
48	High quality Ge-Ol, Ill–V-Ol on 200 mm Si substrate. , 2016, , .		0
49	Robust generation of Kerr frequency combs with strong and localized spectral loss. , 2016, , .		0
50	Comment on "High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band― Physical Review Letters, 2016, 117, 219701.	7.8	2
51	Germanium photodetectors on amorphous substrates for electronic-photonic integration. , 2016, , .		2
52	Parameter Space Exploration in Dispersion Engineering of Multilayer Silicon Waveguides from Near-Infrared to Mid-Infrared. Journal of Lightwave Technology, 2016, 34, 3696-3702.	4.6	17
53	Direct MOCVD epitaxy of GaAsP on SiGe virtual substrate without growth of SiGe. Journal of Crystal Growth, 2016, 441, 78-83.	1.5	3
54	Wavelength-flexible Kerr Frequency Comb Generation Covering a 2000-nm Bandwidth in Mid-Infrared. , 2016, , .		1

4

#	Article	IF	CITATIONS
55	Linear-regression-based approach for loss extraction from ring resonators. Optics Letters, 2016, 41, 4747.	3.3	11
56	Mid-IR Kerr Frequency Comb Generation from 4000 to 10000 nm in a CMOS-compatible Germanium Microcavity. , 2016, , .		0
57	Impact of breather soliton in Kerr combs on the performance of communication systems. , 2015, , .		Ο
58	Thermally tunable resonator using directly integrated metallic heater. , 2015, , .		0
59	On-chip light sources for silicon photonics. Light: Science and Applications, 2015, 4, e358-e358.	16.6	418
60	Design for energy: Modeling of spectrum, temperature and device structure dependences of solar cell energy production. Solar Energy Materials and Solar Cells, 2015, 136, 48-63.	6.2	38
61	Soliton breathing induced by stimulated Raman scattering and self-steepening in octave-spanning Kerr frequency comb generation. Optics Express, 2015, 23, 18665.	3.4	14
62	Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 26.	2.1	30
63	Impact of Higher-Order Dispersion on the Performance of a Kerr Frequency Comb as Affected by the Generated Dispersive Wave. , 2015, , .		Ο
64	Raman scattering and Kerr shock induced breather soliton in Kerr frequency comb generation. , 2015, ,		0
65	Enhanced Self-frequency Shift of Cavity Soliton in Mode-locked Octave-spanning Frequency Comb Generation. , 2014, , .		2
66	Graphene-based optical phase modulation of waveguide transverse electric modes. Photonics Research, 2014, 2, A34.	7.0	38
67	Nonlinear conversion efficiency in Kerr frequency comb generation. Optics Letters, 2014, 39, 6126.	3.3	125
68	Intra-Cavity Dispersion of Microresonators and its Engineering for Octave-Spanning Kerr Frequency Comb Generation. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 111-117.	2.9	13
69	Two-cycle pulse generation from mode-locked Kerr frequency combs based on an integrated dispersion-flattened micro-resonator. , 2014, , .		1
70	Chemical Mechanical Polishing of Selective Epitaxial Grown Germanium on Silicon. ECS Journal of Solid State Science and Technology, 2014, 3, P5-P9.	1.8	12
71	Dispersion-Engineered Silicon Nitride Waveguide for Supercontinuum Generation at Visible Wavelengths. , 2014, , .		0
72	Ultralow-Power LED-Enabled On-Chip Optical Communication Designed in the III-Nitride and Silicon CMOS Process Integrated Platform. IEEE Design and Test, 2014, 31, 36-45.	1.2	13

#	Article	IF	CITATIONS
73	Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding. Applied Physics Letters, 2014, 104, 031115.	3.3	19
74	Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 2014, 3, 247-268.	6.0	219
75	Design and fabrication of a high transmissivity metal-dielectric ultraviolet band-pass filter. Applied Physics Letters, 2013, 102, .	3.3	20
76	Development of a chip-to-chip optical interconnect system. , 2013, , .		0
77	Hybrid nano ridge plasmonic polaritons waveguides. Applied Physics Letters, 2013, 103, .	3.3	36
78	Theoretical analysis of bulk Ge-on-Si laser performance. , 2013, , .		0
79	Reversed self-steepening in nonlinear pulse propagation along a silicon nano-crystal slot waveguide with engineered dispersion of nonlinearity. , 2013, , .		0
80	Infrared absorption of n-type tensile-strained Ge-on-Si. Optics Letters, 2013, 38, 652.	3.3	25
81	Post-fabrication trimming of athermal silicon waveguides. Optics Letters, 2013, 38, 5450.	3.3	34
82	High n-Type Doping in Ge for Optical Gain and Lasing. Solid State Phenomena, 2013, 205-206, 394-399.	0.3	0
83	Breaking the Energy-Bandwidth Limit of Electrooptic Modulators: Theory and a Device Proposal. Journal of Lightwave Technology, 2013, 31, 4029-4036.	4.6	30
84	Analysis of Threshold Current Behavior for Bulk and Quantum-Well Germanium Laser Structures. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1901009-1901009.	2.9	40
85	Towards ultra-subwavelength optical latches. Applied Physics Letters, 2013, 103, .	3.3	11
86	Large inherent optical gain from the direct gap transition of Ge thin films. Applied Physics Letters, 2013, 102, 131116.	3.3	27
87	Direct band gap narrowing in highly doped Ge. Applied Physics Letters, 2013, 102, .	3.3	84
88	Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Optics Letters, 2013, 38, 5122.	3.3	70
89	Photodetectors. Series in Optics and Optoelectronics, 2013, , 479-552.	0.0	1
90	Solar spectral variations and their influence on concentrator solar cell performance. Proceedings of SPIE, 2013, , .	0.8	2

#	Article	IF	CITATIONS
91	The Ge-on-Si Integrated Microphotonic Platform. , 2013, , .		Ο
92	An electrically pumped germanium laser. Optics Express, 2012, 20, 11316.	3.4	689
93	Light trapping limits in plasmonic solar cells: an analytical investigation. Optics Express, 2012, 20, A496.	3.4	22
94	Stability of polymer-dielectric bi-layers for athermal silicon photonics. Optics Express, 2012, 20, 16059.	3.4	16
95	Light trapping limits in plasmonic solar cells: an analytical investigation: errata. Optics Express, 2012, 20, 24699.	3.4	1
96	An Electrically Pumped Ge-on-Si Laser. , 2012, , .		16
97	High active carrier concentration in n-type, thin film Ge using delta-doping. Optical Materials Express, 2012, 2, 1462.	3.0	55
98	Single element spectral splitting solar concentrator for multiple cells CPV system. Optics Express, 2012, 20, 9004.	3.4	62
99	Ge laser and on-chip electronic-photonic integration. , 2012, , .		1
100	High phosphorous doped germanium: Dopant diffusion and modeling. Journal of Applied Physics, 2012, 112, .	2.5	38
101	High capacity, photo-trimmable athermal silicon waveguides. , 2012, , .		0
102	Solar Spectrum Splitting Parallel Junction High Efficiency Concentrating Photovoltaics. Materials Research Society Symposia Proceedings, 2012, 1391, 46.	0.1	4
103	Large transient optical gain from N ⁺ Ge-on-Si. , 2012, , .		0
104	Germanium laser: A CMOS compatible light emitter. , 2012, , .		1
105	Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration. Semiconductor Science and Technology, 2012, 27, 094006.	2.0	96
106	On-Chip Octave-Spanning Supercontinuum in Nanostructured Silicon Waveguides Using Ultralow Pulse Energy. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1799-1806.	2.9	33
107	Integrated photonic structures for light trapping in thin-film Si solar cells. Applied Physics Letters, 2012, 100, 111110.	3.3	38
108	Co-polymer clad design for high performance athermal photonic circuits. Optics Express, 2012, 20, 20808.	3.4	13

7

JURGEN MICHEL

#	Article	IF	CITATIONS
109	Electrically Pumped Germanium-on-Silicon Laser. , 2012, , .		1
110	Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520, 3354-3360.	1.8	137
111	Singleâ€Crystal Germanium Growth on Amorphous Silicon. Advanced Functional Materials, 2012, 22, 1049-1057.	14.9	20
112	An Electrically Pumped Ge-on-Si Laser. , 2012, , .		12
113	High n-type doped germanium for electrically pumped Ge laser. , 2012, , .		2
114	Trimming of Athermal Silicon Resonators. , 2012, , .		5
115	High n++ doped germanium: Dopant in-diffusion and modeling. , 2011, , .		Ο
116	Optimization-based design of surface textures for thin-film Si solar cells — Are conventional Lambertian models relevant?. , 2011, , .		1
117	Efficient evanescent wave coupling conditions for waveguide-integrated thin-film Si/Ge photodetectors on silicon-on-insulator/germanium-on-insulator substrates. Journal of Applied Physics, 2011, 110, .	2.5	25
118	Design and fabrication of high-index-contrast self-assembled texture for light extraction enhancement in LEDs. Optics Express, 2011, 19, A701.	3.4	15
119	Optimization-based design of surface textures for thin-film Si solar cells. Optics Express, 2011, 19, A841.	3.4	104
120	Design and Nonâ€Lithographic Fabrication of Light Trapping Structures for Thin Film Silicon Solar Cells. Advanced Materials, 2011, 23, 843-847.	21.0	63
121	Optical characterization of Ge-on-Si laser gain media. , 2011, , .		5
122	Ge-on-Si lasers for silicon photonics. , 2011, , .		1
123	Electroluminescence of highly doped Ge pnn diodes for Si integrated lasers. , 2011, , .		1
124	A Germanium-on-Silicon Laser for On-chip Applications. , 2011, , .		1
125	Germanium on Silicon Lasers and Detectors. , 2011, , .		0
126	High n-type Doping for Ge Lasers. , 2011, , .		0

#	Article	IF	CITATIONS
127	Toward a Germanium Laser for Integrated Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 124-131.	2.9	122
128	High-performance Ge-on-Si photodetectors. Nature Photonics, 2010, 4, 527-534.	31.4	1,215
129	Monolithic Ge-on-Si lasers for integrated photonics. , 2010, , .		1
130	Integration of Self-Assembled Porous Alumina and Distributed Bragg Reflector for Light Trapping in Si Photovoltaic Devices. IEEE Photonics Technology Letters, 2010, 22, 1394-1396.	2.5	39
131	Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies. Optics Express, 2010, 18, 17631.	3.4	101
132	Ge-on-Si laser operating at room temperature. Optics Letters, 2010, 35, 679.	3.3	818
133	Silicon RF-Photonic Filter and Down-Converter. Journal of Lightwave Technology, 2010, 28, 3019-3028.	4.6	61
134	Evanescent Coupling Device Design for Waveguide-Integrated Group IV Photodetectors. Journal of Lightwave Technology, 2010, , .	4.6	2
135	Low-temperature germanium ultra-high vacuum chemical vapor deposition for back-end photonic device integration. , 2010, , .		3
136	Ge-on-Si integrated photonics: New tricks from an old semiconductor. , 2010, , .		1
137	Direct demonstration of sensitization at 980nm optical excitation in erbium-ytterbium silicates. , 2010, , .		3
138	Monolithic Ge-on-Si lasers. , 2010, , .		0
139	Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer. Applied Physics Letters, 2009, 94, 141108.	3.3	52
140	Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Applied Physics Letters, 2009, 95, .	3.3	246
141	Coupling efficiency of monolithic, waveguide-integrated Si photodetectors. Applied Physics Letters, 2009, 94, 081108.	3.3	7
142	Light up the Future of Silicon Microprocessors. ECS Transactions, 2009, 19, 17-28.	0.5	2
143	Optical gain from the direct gap transition of Ge-on-Si at room temperature. , 2009, , .		2
144	Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Optics Letters, 2009, 34, 1198.	3.3	223

JURGEN MICHEL

#	Article	IF	CITATIONS
145	Direct-gap optical gain of Ge on Si at room temperature. Optics Letters, 2009, 34, 1738.	3.3	146
146	Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process. Optics Letters, 2009, 34, 2378.	3.3	23
147	Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators. Journal of Lightwave Technology, 2009, 27, 2105-2110.	4.6	153
148	Low-cost, Deterministic Quasi-periodic Photonic Structures for light trapping in thin film silicon solar cells. , 2009, , .		3
149	Low-temperature germanium ultra-high vacuum chemical vapor deposition for back-end photonic integration. , 2009, , .		2
150	A Ge-on-Si Laser for Electronic-Photonic Integration. , 2009, , .		0
151	Active Ge Based Devices for Silicon Photonics. , 2009, , .		0
152	Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photonics, 2008, 2, 433-437.	31.4	466
153	Athermal High-Index-Contrast Waveguide Design. IEEE Photonics Technology Letters, 2008, 20, 885-887.	2.5	70
154	Impedance matching vertical optical waveguide couplers for dense high index contrast circuits. Optics Express, 2008, 16, 11682.	3.4	91
155	Towards a Ge-based laser for CMOS applications. , 2008, , .		13
156	Ultralow energy, integrated GeSi electroabsorption modulators on SOI. , 2008, , .		9
157	Thermo-optical compensation in high-index-contrast waveguides. , 2008, , .		4
158	Theoretical modeling on hydrogen evolution in ultraviolet light-treated hydrogenated silicon nitride. Journal of Applied Physics, 2008, 104, 094103.	2.5	2
159	Optical Bleaching of Thin Film Ge on Si. ECS Transactions, 2008, 16, 881-889.	0.5	18
160	High Performance Ge Devices for Electronic-Photonic Integrated Circuits. ECS Transactions, 2008, 16, 575-582.	0.5	6
161	Band-engineered Ge as gain medium for Si-based laser. , 2008, , .		1

162 Integrated GeSi Electro-Absorption Modulators on SOI. , 2008, , .

0

#	Article	IF	CITATIONS
163	Ge-based Active Devices for Si Photonics. , 2007, , .		1
164	Ge Photodetectors Integrated with Waveguides for Electronic-Photonic Integrated Circuits on CMOS Platform. , 2007, , .		0
165	High performance asymmetric graded index coupler with integrated lens for high index waveguides. Applied Physics Letters, 2007, 90, 201116.	3.3	15
166	Lossless strip-to-slot waveguide transformer. Optics Letters, 2007, 32, 1250.	3.3	83
167	Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on a SOI platform. Optics Express, 2007, 15, 623.	3.4	106
168	High performance, waveguide integrated Ge photodetectors. Optics Express, 2007, 15, 3916.	3.4	426
169	Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Optics Express, 2007, 15, 11272.	3.4	557
170	Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm. Optics Express, 2007, 15, 17967.	3.4	202
171	Demonstration of a Fourth-Order Pole-Zero Optical Filter Integrated Using CMOS Processes. Journal of Lightwave Technology, 2007, 25, 87-92.	4.6	83
172	Modeling of Aperiodic Fractal Waveguide Structures for Multifrequency Light Transport. Journal of Lightwave Technology, 2007, 25, 1841-1847.	4.6	19
173	Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates. Applied Physics Letters, 2007, 91, 252111.	3.3	40
174	Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells. IEEE Transactions on Electron Devices, 2007, 54, 1926-1933.	3.0	133
175	Synthesis, Characterization, and Modeling of Nitrogen-Passivated Colloidal and Thin Film Silicon Nanocrystals. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1151-1163.	2.9	13
176	Light-Emitting Silicon Nanocrystals and Photonic Structures in Silicon Nitride. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1628-1635.	2.9	36
177	Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems. Applied Physics Letters, 2006, 88, 081112.	3.3	39
178	Large electro-optic effect in tensile strained Ge-on-Si films. Applied Physics Letters, 2006, 89, 161115.	3.3	63
179	Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate. Journal of Applied Physics, 2005, 98, 013501.	2.5	148
180	Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Applied Physics Letters, 2005, 87, 011110.	3.3	189

#	Article	IF	CITATIONS
181	High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform. Applied Physics Letters, 2005, 87, 103501.	3.3	205
182	Deformation potential constants of biaxially tensile stressedGeepitaxial films onSi(100). Physical Review B, 2004, 70, .	3.2	155
183	Silicidation-induced band gap shrinkage in Ge epitaxial films on Si. Applied Physics Letters, 2004, 84, 660-662.	3.3	40
184	Tensile strained epitaxial Ge films on Si(100) substrates with potential application inL-band telecommunications. Applied Physics Letters, 2004, 84, 906-908.	3.3	141
185	High Speed Ge Photodetectors on Si Platform for GHz Optical Communications in C+L Bands. Materials Research Society Symposia Proceedings, 2004, 829, 24.	0.1	2
186	A High Index Contrast Silicon Oxynitride Materials Platform for Er-doped Microphotonic Amplifiers. Materials Research Society Symposia Proceedings, 2004, 817, 42.	0.1	1
187	Er2O3 for high-gain waveguide amplifiers. Journal of Electronic Materials, 2004, 33, 809-814.	2.2	39
188	Effect of Crystalization On Photoluminescence of ER2O3 Thin Films. Materials Research Society Symposia Proceedings, 2001, 694, 1.	0.1	0
189	Er-doped polycrystalline silicon for light emission at λ=1.54 Âμm. Journal of Electronic Materials, 2000, 29, 973-978.	2.2	1
190	A Dielectric Omnidirectional Reflector. , 1998, 282, 1679-1682.		1,148
191	Monitoring and Optimization of Silicon Surface Quality. Journal of the Electrochemical Society, 1995, 142, 2833-2835.	2.9	37
192	The Physics and Application of Si:Er for Light Emitting Diodes. Materials Science Forum, 1994, 143-147, 707-714.	0.3	20