Rokeya Tasneen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11671552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mouse Model of Necrotic Tuberculosis Granulomas Develops Hypoxic Lesions. Journal of Infectious Diseases, 2012, 205, 595-602.	4.0	215
2	Powerful Bactericidal and Sterilizing Activity of a Regimen Containing PA-824, Moxifloxacin, and Pyrazinamide in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 1522-1524.	3.2	203
3	Sterilizing Activity of Novel TMC207- and PA-824-Containing Regimens in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 5485-5492.	3.2	181
4	Dose-Ranging Comparison of Rifampin and Rifapentine in Two Pathologically Distinct Murine Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 4331-4340.	3.2	142
5	Addition of PNU-100480 to First-Line Drugs Shortens the Time Needed to Cure Murine Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 371-376.	5.6	118
6	Enhanced Bactericidal Activity of Rifampin and/or Pyrazinamide When Combined with PA-824 in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 3664-3668.	3.2	106
7	Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Bedaquiline and Pretomanid in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 270-277.	3.2	98
8	Paradoxical Effect of Isoniazid on the Activity of Rifampin-Pyrazinamide Combination in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2009, 53, 4178-4184.	3.2	90
9	Contribution of the Nitroimidazoles PA-824 and TBA-354 to the Activity of Novel Regimens in Murine Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 129-135.	3.2	75
10	Bactericidal and Sterilizing Activity of a Novel Regimen with Bedaquiline, Pretomanid, Moxifloxacin, and Pyrazinamide in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61,	3.2	68
11	Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	62
12	Comparison of the 'Denver regimen' against acute tuberculosis in the mouse and guinea pig. Journal of Antimicrobial Chemotherapy, 2010, 65, 729-734.	3.0	49
13	Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. DMM Disease Models and Mechanisms, 2016, 9, 779-88.	2.4	49
14	Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	37
15	Verapamil Increases the Bioavailability and Efficacy of Bedaquiline but Not Clofazimine in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	35
16	In Vivo-Selected Pyrazinoic Acid-Resistant <i>Mycobacterium tuberculosis</i> Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1. ACS Infectious Diseases, 2017, 3, 492-501.	3.8	33
17	In vitro and in vivo activity of biapenem against drug-susceptible and rifampicin-resistant Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2017, 72, 2320-2325.	3.0	30
18	Shorter-course treatment for Mycobacterium ulcerans disease with high-dose rifamycins and clofazimine in a mouse model of Buruli ulcer. PLoS Neglected Tropical Diseases, 2018, 12, e0006728.	3.0	26

Rokeya Tasneen

#	Article	IF	CITATIONS
19	Treatment-Shortening Effect of a Novel Regimen Combining Clofazimine and High-Dose Rifapentine in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	23
20	High Systemic Exposure of Pyrazinoic Acid Has Limited Antituberculosis Activity in Murine and Rabbit Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 4197-4205.	3.2	21
21	Preserved Efficacy and Reduced Toxicity with Intermittent Linezolid Dosing in Combination with Bedaquiline and Pretomanid in a Murine Tuberculosis Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	17
22	Telacebec for Ultrashort Treatment of Buruli Ulcer in a Mouse Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	16
23	Novel Regimens of Bedaquiline-Pyrazinamide Combined with Moxifloxacin, Rifabutin, Delamanid and/or OPC-167832 in Murine Tuberculosis Models. Antimicrobial Agents and Chemotherapy, 2022, 66, e0239821.	3.2	15
24	Mechanistic Modeling of Mycobacterium tuberculosis Infection in Murine Models for Drug and Vaccine Efficacy Studies. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
25	Advancing the Therapeutic Potential of Indoleamides for Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	12
26	GSK2556286 Is a Novel Antitubercular Drug Candidate Effective <i>In Vivo</i> with the Potential To Shorten Tuberculosis Treatment. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	12
27	Efficacy of Long-Acting Bedaquiline Regimens in a Mouse Model of Tuberculosis Preventive Therapy. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 570-579.	5.6	10
28	Dual mTORC1/mTORC2 Inhibition as a Host-Directed Therapeutic Target in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0025321.	3.2	8
29	Immunodeficiency and Intermittent Dosing Promote Acquired Rifamycin Monoresistance in Murine Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	4
30	Reply to "Contradictory Results with High-Dosage Rifamycin in Mice and Humans― Antimicrobial Agents and Chemotherapy, 2013, 57, 1104-1105.	3.2	3