
Oscar L Malta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1166413/publications.pdf Version: 2024-02-01

OSCAD | MAITA

#	Article	IF	CITATIONS
1	Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordination Chemistry Reviews, 2000, 196, 165-195.	18.8	1,417
2	Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl) Tj ETQq0 Luminescence, 1997, 75, 255-268.	0 0 rgBT /0 3.1	Overlock 10 T 392
3	Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method. Journal of Luminescence, 2003, 101, 11-21.	3.1	340
4	Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials. Journal of Luminescence, 1985, 33, 261-272.	3.1	242
5	Intensity parameters of 4f—4f transitions in the Eu(dipivaloylmethanate)3 1, 10-phenanthroline complex. Journal of Luminescence, 1996, 69, 77-84.	3.1	233
6	Boosting the sensitivity of Nd ³⁺ -based luminescent nanothermometers. Nanoscale, 2015, 7, 17261-17267.	5.6	213
7	Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates:Â Energy Transfer Mechanisms in the SmIlland YbIIIMolecular Edifices. Journal of Physical Chemistry A, 2002, 106, 1670-1677.	2.5	199
8	Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide). Chemical Physics Letters, 1998, 282, 233-238.	2.6	197
9	A theoretical interpretation of the abnormal 5D0→7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. Journal of Luminescence, 2006, 121, 561-567.	3.1	197
10	Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. Journal of Non-Crystalline Solids, 2008, 354, 4770-4776.	3.1	190
11	Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide–β-diketonate complexes. Journal of Materials Chemistry, 2011, 21, 3796.	6.7	182
12	Influence of the N-[methylpyridyl]acetamide ligands on the photoluminescent properties of Eu(III)-perchlorate complexes. Polyhedron, 2002, 21, 1837-1844.	2.2	165
13	Ligand—rare-earth ion energy transfer in coordination compounds. A theoretical approach. Journal of Luminescence, 1997, 71, 229-236.	3.1	163
14	Theoretical crystal-field parameters for the YOCl:Eu3+ system. A simple overlap model. Chemical Physics Letters, 1982, 88, 353-356.	2.6	162
15	A simple overlap model in lanthanide crystal-field theory. Chemical Physics Letters, 1982, 87, 27-29.	2.6	148
16	Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs. Nature Communications, 2014, 5, 5702.	12.8	146
17	Highly-sensitive Eu ³⁺ ratiometric thermometers based on excited state absorption with predictable calibration. Nanoscale, 2016, 8, 5327-5333.	5.6	136
18	Enhancement of Pr3+ luminescence in PbO–GeO2 glasses containing silver nanoparticles. Applied Physics Letters, 2005, 87, 241914.	3.3	135

#	Article	IF	CITATIONS
19	Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles. Chemical Physics Letters, 1990, 174, 13-18.	2.6	130
20	Spectroscopic Study of a UV-Photostable Organic-Inorganic Hybrids Incorporating an Eu3+ β-Diketonate Complex. ChemPhysChem, 2006, 7, 735-746.	2.1	127
21	Overlap polarizability of a chemical bond: a scale of covalency and application to lanthanide compounds. Chemical Physics, 2002, 282, 21-30.	1.9	125
22	Relationship between phenomenological crystal field parameters and the crystal structure: The simple overlap model. Physical Chemistry Chemical Physics, 1999, 1, 397-405.	2.8	117
23	Theoretical intensities of 4f-4f transitions between stark levels of the Eu3+ ion in crystals. Journal of Physics and Chemistry of Solids, 1991, 52, 587-593.	4.0	112
24	Luminescence investigation of the Sm(III)-β-diketonates with sulfoxides, phosphine oxides and amides ligands. Journal of Alloys and Compounds, 2002, 344, 293-297.	5.5	109
25	Highly luminescent europium(III) complexes with naphtoiltrifluoroacetone and dimethyl sulphoxide. Molecular Physics, 2003, 101, 1037-1045.	1.7	98
26	Photoluminescence of Europium(III) Dithiocarbamate Complexes:  Electronic Structure, Charge Transfer and Energy Transfer. Journal of Physical Chemistry A, 2006, 110, 2510-2516.	2.5	98
27	Photo–Click Chemistry to Design Highly Efficient Lanthanide β-Diketonate Complexes Stable under UV Irradiation. Chemistry of Materials, 2013, 25, 586-598.	6.7	96
28	The crystal field strength parameter and the maximum splitting of the 7F1 manifold of the Eu3+ ion in oxides. Journal of Alloys and Compounds, 1995, 228, 41-44.	5.5	94
29	Intensities of 4f-4f transitions in glass materials. Quimica Nova, 2003, 26, 889-895.	0.3	89
30	On the calculation and interpretation of covalency in the intensity parameters of 4f–4f transitions in Eu 3+ complexes based on the chemical bond overlap polarizability. Journal of Luminescence, 2016, 170, 420-430.	3.1	88
31	Energy Transfer Mechanisms in Organicâ^Inorganic Hybrids Incorporating Europium(III):  A Quantitative Assessment by Light Emission Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 17627-17634.	3.1	84
32	Calculation of the ligand–lanthanide ion energy transfer rate in coordination compounds: contributions of exchange interactions. Journal of Alloys and Compounds, 1997, 250, 427-430.	5.5	81
33	White OLED based on a temperature sensitive Eu3+/Tb3+ β-diketonate complex. Organic Electronics, 2014, 15, 798-808.	2.6	74
34	A covalent fraction model for lanthanide compounds. Chemical Physics Letters, 2005, 415, 238-242.	2.6	71
35	Energy Transfer and Emission Quantum Yields of Organicâ^'Inorganic Hybrids Lacking Metal Activator Centers. Journal of Physical Chemistry C, 2007, 111, 3275-3284.	3.1	70
36	Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend. Chemical Physics Letters, 2004, 396, 54-58.	2.6	68

#	Article	IF	CITATIONS
37	Synthesis, crystalline structure and photoluminescence investigations of the new trivalent rare earth complexes (Sm3+, Eu3+ and Tb3+) containing 2-thiophenecarboxylate as sensitizer. Inorganica Chimica Acta, 2004, 357, 451-460.	2.4	67
38	Contribution of Energy Transfer from the Singlet State to the Sensitization of Eu ³⁺ and Tb ³⁺ Luminescence by Sulfonylamidophosphates. Chemistry - A European Journal, 2017, 23, 1318-1330.	3.3	67
39	Luminescence spectroscopy of Eu3+ in Ca3Sc2Si3O12. Journal of Luminescence, 2011, 131, 1026-1028.	3.1	64
40	Luminescence of the films of europium (III) with thenoyltrifluoroacetonate and macrocyclics. Journal of Non-Crystalline Solids, 1999, 247, 129-133.	3.1	58
41	Down-conversion process in Tb3+–Yb3+ co-doped Calibo glasses. Journal of Luminescence, 2012, 132, 1678-1682.	3.1	56
42	The Role of the Ligandâ€ŧoâ€Metal Chargeâ€Transfer State in the Dipivaloylmethanate‣anthanide Intramolecular Energy Transfer Process. European Journal of Inorganic Chemistry, 2015, 2015, 3019-3027.	2.0	56
43	Molecule-Like Eu ³⁺ -Dimers Embedded in an Extended System Exhibit Unique Photoluminescence Properties. Journal of the American Chemical Society, 2009, 131, 8620-8626.	13.7	55
44	On the dependence of the luminescence intensity of rare-earth compounds with pressure: a theoretical study of Eu(TTF)32H2O in polymeric solution and crystalline phases. Chemical Physics Letters, 1999, 307, 518-526.	2.6	54
45	Influence of titanium and lutetium on the persistent luminescence of ZrO_2. Optical Materials Express, 2012, 2, 331.	3.0	54
46	Dependence of the Lifetime upon the Excitation Energy and Intramolecular Energy Transfer Rates: The ⁵ D ₀ Eu ^{III} Emission Case. Chemistry - A European Journal, 2012, 18, 12130-12139.	3.3	54
47	Synthesis and Characterization of the Europium(III) Pentakis(picrate) Complexes with Imidazolium Countercations: Structural and Photoluminescence Study. Inorganic Chemistry, 2012, 51, 12867-12878.	4.0	54
48	Lanthanidef↔ftransitions hypersensitive to the environment. Molecular Physics, 1981, 42, 65-72.	1.7	53
49	Photoluminescence of single-phased white light emission materials based on simultaneous Tb3+, Eu3+ and Dy3+ doping in CaWO4 matrix. Journal of Alloys and Compounds, 2017, 696, 820-827.	5.5	53
50	Surface Plasmon–Photon Coupling in Lanthanide-Doped Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 1520-1541.	4.6	52
51	Effects of Dopant Addition on Lattice and Luminescence Intensity Parameters of Eu(III)-Doped Lanthanum Orthovanadate. Journal of Physical Chemistry C, 2016, 120, 28497-28508.	3.1	50
52	Preparation, crystal structure and optical spectroscopy of the rare earth complexes (RE3+=Sm, Eu, Gd) Tj ETQqC) 0 0 rgBT 3.6	/Overlock 10
53	Photoluminescent PMMA polymer films doped with Eu3+-β-diketonate crown ether complex. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 154-159.	3.9	48

⁵⁴Red-Green Emitting and Superparamagnetic Nanomarkers Containing Fe₃O₄54Functionalized with Calixarene and Rare Earth Complexes. Inorganic Chemistry, 2014, 53, 12902-12910.4.048

#	Article	IF	CITATIONS
55	Polarized Luminescence of Anisotropic LaPO ₄ :Eu Nanocrystal Polymorphs. Journal of the American Chemical Society, 2018, 140, 9512-9517.	13.7	48
56	Theoretical and Experimental Investigation of the Tb ³⁺ → Eu ³⁺ Energy Transfer Mechanisms in Cubic A ₃ Tb _{0.90} Eu _{0.10} (PO ₄) ₃ (A = Sr, Ba) Materials. Journal of Physical Chemistry C, 2020, 124, 10105-10116.	3.1	48
57	Optical transition probabilities and compositional dependence of Judd-Ofelt parameters of Er3+ ions in fluoroindate glass. Journal of Alloys and Compounds, 1995, 227, 135-140.	5.5	47
58	A theoretical study of the energy-transfer process in [EuâŠ,bpy.bpy.bpy]3+ cryptates: a ligand-to-metal charge-transfer state?. Chemical Physics Letters, 2000, 328, 67-74.	2.6	47
59	On the 5D0→7F0 transition of the Eu3+ ion in the {(C4H9)4N}3Y(NCS)6 host. Journal of Luminescence, 1982, 26, 337-343.	3.1	46
60	Photoluminescence and cathodoluminescence of Tb-doped Al2O3–ZrO2 nanostructures obtained by sol–gel method. Chemical Physics, 2003, 291, 275-285.	1.9	45
61	Theoretical modelling of the low quantum yield observed in an Eu(III) triple helical complex with a tridentate aromatic ligand. Physical Chemistry Chemical Physics, 2000, 2, 5400-5403.	2.8	44
62	Synthesis, Crystal Structure, and Modelling of a New Tetramer Complex of Europium. Journal of Physical Chemistry B, 2007, 111, 9228-9238.	2.6	44
63	Energy transfer upconversion dynamics in YVO 4 :Yb 3+ ,Er 3+. Journal of Luminescence, 2016, 170, 560-570.	3.1	44
64	On the mechanisms of non-radiative energy transfer between lanthanide ions: centrosymmetric systems. Journal of Luminescence, 2019, 210, 342-347.	3.1	44
65	On the charge factors of the simple overlap model for the ligand field in lanthanide coordination compounds. Chemical Physics Letters, 2000, 331, 519-525.	2.6	43
66	Energy-transfer from Gd(iii) to Tb(iii) in (Gd,Yb,Tb)PO4 nanocrystals. Physical Chemistry Chemical Physics, 2013, 15, 15565.	2.8	43
67	Modeling intramolecular energy transfer in lanthanide chelates: A critical review and recent advances. Fundamental Theories of Physics, 2019, , 55-162.	0.3	43
68	Luminescence Investigations on Eu(III) Thenoyltrifluoroacetonate Complexes with Amide Ligands. Journal of Coordination Chemistry, 2003, 56, 913-921.	2.2	42
69	Up-conversion in YAC:Pr3+. Chemical Physics Letters, 1986, 129, 557-561.	2.6	41
70	The theory of vibronic transitions in rare earth compounds. Journal of Physics and Chemistry of Solids, 1995, 56, 1053-1062.	4.0	40
71	Luminescent material based on the [Eu(TTA)3(H2O)2] complex incorporated into modified silica particles for biological applications. Journal of Inorganic Biochemistry, 2013, 123, 11-17.	3.5	40
72	Theoretical modeling of thermally activated luminescence quenching through charge transfer states in lanthanide complexes. Chemical Physics Letters, 2006, 429, 595-599.	2.6	39

#	Article	IF	CITATIONS
73	White OLED using β-diketones rare earth binuclear complex as emitting layer. Thin Solid Films, 2006, 494, 23-27.	1.8	39
74	How minor structural changes generate major consequences in photophysical properties of RE coordination compounds; resonance effect, LMCT state. Journal of Rare Earths, 2020, 38, 552-563.	4.8	39
75	Synthesis, spectroscopy and photophysical properties of mixed ligand complexes of europium(III) and terbium(III). Journal of Alloys and Compounds, 1994, 207-208, 457-460.	5.5	37
76	Measurement and model calculation of the temperature dependence of ligand-to-metal energy transfer rates in lanthanide complexes. Journal of Luminescence, 2013, 137, 269-273.	3.1	36
77	Synthesis and luminescent properties of supramolecules of \hat{I}^2 -diketonate of Eu(III) and crown ethers as ligands. Journal of Solid State Chemistry, 2003, 171, 189-194.	2.9	34
78	Experimental and Theoretical Study of the Photophysics and Structures of Europium Cryptates Incorporating 3,3?-Bi-isoquinoline-2,2?-dioxide. ChemPhysChem, 2004, 5, 1577-1584.	2.1	34
79	Photoluminescence behavior of the Sm3+ and Tb3+ ions doped into the Gd2(WO4)3 matrix prepared by the Pechini and ceramic methods. Journal of the Brazilian Chemical Society, 2004, 15, 890-896.	0.6	33
80	Lanthanide complexes with <i>N</i> -phosphorylated carboxamide as UV converters with excellent emission quantum yield and single-ion magnet behavior. Journal of Materials Chemistry C, 2020, 8, 9993-10009.	5.5	33
81	Synthesis and photophysical study of highly luminescent coordination compounds of rare earth ions with thenoyltrifluoroacetonate and AZT. Journal of Inorganic Biochemistry, 2002, 88, 87-93.	3.5	32
82	Design of ligands to obtain lanthanide ion complexes displaying high quantum efficiencies of luminescence using the sparkle model. Computational and Theoretical Chemistry, 2000, 527, 245-251.	1.5	30
83	Neodymium doped fluoroindogallate glasses as highly-sensitive luminescent non-contact thermometers. Optical Materials, 2017, 63, 42-45.	3.6	30
84	A theoretical calculation of vibronic coupling strength: the trend in the lanthanide ion series and the host-lattice dependence. Journal of Physics and Chemistry of Solids, 2000, 61, 1489-1498.	4.0	29
85	Unusual photoluminescence properties of the 3D mixed-lanthanide–organic frameworks induced by dimeric structures: a theoretical and experimental approach. Physical Chemistry Chemical Physics, 2014, 16, 14858-14866.	2.8	29
86	On the quenching of trivalent terbium luminescence by ligand low lying triplet state energy and the role of the 7F5 level: The [Tb(tta)3 (H2O)2] case. Journal of Luminescence, 2015, 167, 167-171.	3.1	28
87	Novel trivalent europium β-diketonate complexes with N-(pyridine-2-yl)amides and N-(pyrimidine-2-yl)amides as ancillary ligands: Photophysical properties and theoretical structural modeling. Journal of Luminescence, 2020, 219, 116884.	3.1	28
88	Up-conversion yield in glass ceramics containing silver. Journal of Solid State Chemistry, 1987, 68, 314-319.	2.9	27
89	Estudo espectroscópico de complexos de Eu3+, Tb3+ E Gd3+ com ligantes derivados de ácidos dicarboxÃłicos. Quimica Nova, 2005, 28, 805-808.	0.3	27
90	Photoluminescence study of new lanthanide complexes with benzeneseleninic acids. Journal of Luminescence, 2010, 130, 181-189.	3.1	27

#	Article	IF	CITATIONS
91	Modeling Lanthanide Complexes: Towards the Theoretical Design of Light Conversion Molecular Devices. Molecular Engineering, 1997, 7, 293-308.	0.2	26
92	Emission quantum yield of a europium(III) tris-β-diketonate complex bearing a 1,4-diaza-1,3-butadiene: Comparison with theoretical prediction. Chemical Physics Letters, 2005, 413, 22-24.	2.6	26
93	Synthesis and luminescent properties of Eu3+-complexes with 2-acyl-1,3-indandionates (ACIND) and TPPO ligands: The first X-ray structure of Eu–ACIND complex. Polyhedron, 2006, 25, 3488-3494.	2.2	25
94	Time evolution of the decay of the 5Do level of Eu3+ in glass materials doped with small silver particles. Chemical Physics Letters, 1985, 116, 396-399.	2.6	24
95	Low temperature synthesis and optical properties of the R2O3:Eu3+ nanophosphors (R3+: Y, Gd and Lu) using TMA complexes as precursors. Optical Materials, 2015, 40, 41-48.	3.6	24
96	Synthesis, characterization and spectroscopic investigation of new tetrakis(acetylacetonato)thulate(III) complexes containing alkaline metals as countercations. Journal of Luminescence, 2011, 131, 99-103.	3.1	23
97	Biolabeling with nanoparticles based on Y2O3: Nd3+ and luminescence detection in the near-infrared. Journal of Luminescence, 2011, 131, 727-731.	3.1	23
98	Odd‣ven Effect on Luminescence Properties of Europium Aliphatic Dicarboxylate Complexes. ChemPhysChem, 2019, 20, 1931-1940.	2.1	23
99	Explanation of the Anomalous HypersensitiveH43→P23Transition inPr3+. Physical Review Letters, 1980, 45, 890-893.	7.8	22
100	Optical and magnetic nanocomposites containing Fe 3 O 4 @SiO 2 grafted with Eu 3+ and Tb 3+ complexes. Journal of Alloys and Compounds, 2016, 686, 453-466.	5.5	21
101	Luminescence investigation of R 3+ -doped alkaline earth tungstates prepared by a soft chemistry method. Journal of Luminescence, 2016, 170, 736-742.	3.1	21
102	Highly luminescent Eu 3+ -doped benzenetricarboxylate based materials. Journal of Luminescence, 2016, 170, 364-368.	3.1	21
103	Excited state calculations of Europium(III) complexes. Journal of Alloys and Compounds, 1997, 250, 412-416.	5.5	20
104	Comparative studies of structure, spectroscopic properties and intensity parameters of tetragonal rare earth vanadate nanophosphors doped with Eu(III). Journal of Alloys and Compounds, 2018, 741, 459-472.	5.5	20
105	Energy transfer between molecules and small metallic particles. Physics Letters, Section A: General, Atomic and Solid State Physics, 1986, 114, 195-197.	2.1	19
106	Lanthanide complexes with phosphorylated 2-naphthylsulfonamides ligands as electromagnetic radiation converters. Dyes and Pigments, 2019, 160, 439-449.	3.7	19
107	Highly sensitive and precise optical temperature sensors based on new luminescent Tb ³⁺ /Eu ³⁺ tetrakis complexes with imidazolic counterions. Materials Advances, 2020, 1, 1988-1995.	5.4	19
108	Evidence of the participation of electronic excited states in the mechanism of positronium formation in substitutional Tb1â^xEux(dpm)3 solid solutions studied by optical and positron annihilation spectroscopies. Physical Chemistry Chemical Physics, 2012, 14, 9996.	2.8	18

#	Article	IF	CITATIONS
109	Comment on the average energy denominator method in perturbation theory. Physics Letters, Section A: General, Atomic and Solid State Physics, 1983, 97, 333-334.	2.1	17
110	Analysis of the fluorescence of the ion Eu3+ in fluoroborate glasses containing silver particles. Journal of Alloys and Compounds, 1992, 180, 215-221.	5.5	17
111	Theoretical and experimental luminescence quantum yields of coordination compounds of trivalent europium. International Journal of Quantum Chemistry, 2005, 103, 572-579.	2.0	17
112	Terbium(III)-containing organic–inorganic hybrids synthesized through hydrochloric acid catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 214-221.	3.9	17
113	Molecular electrophosphorescence in (Sm, Gd)-β-diketonate complex blend for OLED applications. Journal of Luminescence, 2013, 134, 369-373.	3.1	17
114	Luminescence tuning and single-phase white light emitters based on rare earth ions doped into a bismuth coordination network. Journal of Materials Chemistry C, 2018, 6, 12668-12678.	5.5	17
115	Synthesis, Characterization, and Luminescence Properties of Eu3+ 3-Phenyl-4-(4-toluoyl)-5-isoxazolonate Based Organic-Inorganic Hybrids. European Journal of Inorganic Chemistry, 2006, 2006, 3923-3929.	2.0	16
116	Site-selective Eu(<scp>iii</scp>) spectroscopy of highly efficient luminescent mixed-metal Pb(<scp>ii</scp>)/Eu(<scp>iii</scp>) coordination polymers. RSC Advances, 2017, 7, 6093-6101.	3.6	16
117	Redâ€Emitting Magnetic Nanocomposites Assembled from Agâ€Decorated Fe ₃ O ₄ @SiO ₂ and Y ₂ O ₃ :Eu ³⁺ : Impact of Ironâ€Oxide/Silver Nanoparticles on Eu ³⁺ Emission. ChemistrySelect, 2018, 3, 1157-1167.	1.5	16
118	(INVITED) JOYSpectra: A web platform for luminescence of lanthanides. Optical Materials: X, 2021, 11, 100080.	0.8	16
119	Spectroscopic aspects for the Yb3+ coordination compound with a large energy gap between the ligand and Yb3+ excited states. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 274, 121072.	3.9	16
120	Hypersensitivity of the 4I92→ 4G52,2G72 transition of Nd3+ in the Y2O3 and CaWO4 hosts. Chemical Physics Letters, 1980, 74, 101-104.	2.6	15
121	Electrostatic crystal-field contributions in rare-earth compounds with consistent multipolar effects. II. Contribution tok-odd parameters (transition probabilities). Physical Review B, 1983, 27, 7386-7392.	3.2	15
122	Preparation and photoluminescence properties of functionalized silica materials incorporating europium complexes. Optical Materials, 2011, 33, 1548-1552.	3.6	15
123	Synthesis and photoluminescence properties of [Eu(dbm)3·PX] and [Eu(acac)3·PX] complexes. Journal of Luminescence, 2018, 193, 98-105.	3.1	15
124	Optical studies and microstructure of Eu3+-doped fluoroborate glasses containing silver particles. Journal of the Less Common Metals, 1989, 148, 387-391.	0.8	14
125	New Luminescent Lanthanide Tetrakis omplexes NEt ₄ [LnL ₄] Based on Dimethylâ€Nâ€Benzoylamidophosphate. ChemPhysChem, 2022, 23, .	2.1	14
126	On the Use of Ligand Field Parameters in the Study of Coordinated Water Molecules in Eu3+Complexes. Journal of Physical Chemistry A, 2005, 109, 4607-4610.	2.5	13

#	Article	IF	CITATIONS
127	The chemical bond overlap plasmon as a tool for quantifying covalency in solid state materials and its applications to spectroscopy. International Journal of Quantum Chemistry, 2011, 111, 1626-1638.	2.0	13
128	Experimental and theoretical investigations of the [Ln(β-dik)(NO3)2(phen)2]â‹H2O luminescent complexes. Journal of Luminescence, 2020, 226, 117455.	3.1	13
129	Clowing nanocrystals enable 3D X-ray imaging. Nature, 2021, 590, 396-397.	27.8	13
130	Full-color simulation in a multi-doped glass and controlled quenching of luminescence using Er (III) as a suppressor for a tunable device. Journal of Luminescence, 1997, 72-74, 270-272.	3.1	12
131	Uma metodologia para o projeto teórico de conversores moleculares de luz. Quimica Nova, 1998, 21, 51-59.	0.3	12
132	Positronium formation in europium(III) coordination compounds. Chemical Physics Letters, 2006, 424, 63-65.	2.6	12
133	Positron annihilation in triphenylphosphine oxide complexes: Positronium inhibition mechanism involving excitation of charge transfer states. Chemical Physics Letters, 2008, 452, 249-252.	2.6	12
134	Investigation on the formation of highly luminescent Î ² -diketone-Ln(III)-EDTA water-soluble complexes. Journal of Luminescence, 2019, 207, 182-187.	3.1	12
135	Spectroscopic studies of the Eu(III) and Gd(III) tris(3-aminopyridine-2-carboxylic acid) complexes. Journal of Alloys and Compounds, 1997, 250, 417-421.	5.5	10
136	New complexes of europium and gadolinium with 2,4,6-trichlorophenyl acetoacetate as ligand. Optical Materials, 2011, 33, 402-407.	3.6	10
137	Comment on trivalent europium lifetimes in the presence of intramolecular energy transfer processes. Journal of the Brazilian Chemical Society, 2008, 19, 299-301.	0.6	10
138	Some theoretical investigations in crystal field theory. Molecular Physics, 1979, 38, 1347-1357.	1.7	9
139	Development of highly luminescent PMMA films doped with Eu3+β-diketonate coordinated on ancillary ligand. Journal of Materials Science: Materials in Electronics, 2019, 30, 16922-16931.	2.2	9
140	The role of the Eu3+ 7F1 level in the direct sensitization of the 5D0 emitting level through intramolecular energy transfer. Journal of Luminescence, 2022, 247, 118862.	3.1	9
141	Synthesis (in situ) on organofunctionalized silica and spectroscopic study of Eu(III) complexes. Journal of Alloys and Compounds, 2008, 459, 543-547.	5.5	8
142	Novel europium and gadolinium complexes with methaneseleninate as ligand: Synthesis, characterization and spectroscopic study. Inorganic Chemistry Communication, 2012, 15, 97-101.	3.9	8
143	Modeling the influence of silver nanoparticles on the f–f luminescence of the EuEDTA complex in the polyvinylpirrolidone polymer. Journal of Luminescence, 2016, 170, 271-274.	3.1	8
144	Modeling 4f–4f intensity parameters as a function of structural distortions in Ln(2,2′-bipyridine-1,1′-dioxide)4(ClO4)3 complexes (Ln=Pr3+, Nd3+). Journal of Luminescence, 2016, 169, 454-457.	3.1	8

#	Article	IF	CITATIONS
145	Red (Eu ³⁺), Green (Tb ³⁺) and Ultraviolet (Gd ³⁺) Emitting Nitrilotriacetate Complexes Prepared by One-step Synthesis. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 231-238.	0.7	7
146	Overlap properties of chemical bonds in generic systems including unusual bonding situations. Journal of Molecular Modeling, 2020, 26, 301.	1.8	7
147	Electron energy-loss cross sections for the chemical bond overlap plasmon Of the hydrogen molecule. Journal of the Brazilian Chemical Society, 2010, 21, 476-480.	0.6	7
148	Features of chemical bonds based on the overlap polarizabilities: diatomic and solid-state systems with the frozen-density embedding approach. Physical Chemistry Chemical Physics, 2015, 17, 7731-7742.	2.8	6
149	Effects of Spherical Metallic Nanoparticle Plasmon on 4f-4f Luminescence: A Theoretical Approach. , 2019, , 19-36.		6
150	On the long decay time of the 7F5 level of Tb3+. Journal of Luminescence, 2022, 248, 118933.	3.1	6
151	A theoretical framework for optical thermometry based on excited-state absorption and lifetimes of Eu3+ compounds. Journal of Luminescence, 2022, 249, 119039.	3.1	6
152	Emission yield enhancement for non-linear processes in the presence of small metallic particles. Physics Letters, Section A: General, Atomic and Solid State Physics, 1986, 114, 198-200.	2.1	5
153	Persistent luminescence of cadmium silicates. Physica Scripta, 2014, 89, 044014.	2.5	5
154	Role of Surfactants in the Properties of Poly(Ethylene Terephthalate)/Purified Clay Nanocomposites. Materials, 2018, 11, 1397.	2.9	5
155	On the Experimental Determination of 4f–4f Intensity Parameters from the Emission Spectra of Europium (III) Compounds. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2022, 130, 10-17.	0.6	5
156	Multiphoton transitions in direct-gap semiconductors. Solid State Communications, 1983, 46, 461-463.	1.9	4
157	Structural studies in lead fluorogermanate and fluorosilicate glasses. Journal of Alloys and Compounds, 1992, 180, 117-124.	5.5	4
158	A description of ligand field effects in the Di-mu-Azido-Bis [{Azido(N,N-Diethylethylenediamine)}Copper(II)] compound by the simple overlap model. Journal of the Brazilian Chemical Society, 1998, 9, 243-247.	0.6	4
159	Theory of absorption and Raman scattering by the overlap region in a chemical bond. Chemical Physics Letters, 2005, 408, 192-196.	2.6	4
160	Far-infrared absorption by small metallic particles in a spherical oscillator well. Chemical Physics Letters, 1987, 134, 485-490.	2.6	2
161	Efeito de diferentes tipos de argilas e modificadores orgânicos na morfologia e propriedades térmicas dos nanocompósitos de PET. Polimeros, 2011, 21, 195-203.	0.7	2
162	Evidence of the Participation of Electronic Excited States in the Mechanism of Positronium Formation in Substitutional Tb _{1-<i>x</i>} Eu _{<i>x</i>} (dpm) _{3& Solid Solutions Studied by Optical and Positron Annihilation Spectroscopies. Materials Science Forum, 0, 733, 245-248.}	lt;/ mb >	2

#	Article	IF	CITATIONS
163	Low Temperature Synthesis of Luminescent RE ₂ O ₃ :Eu ³⁺ Nanomaterials Using Trimellitic Acid Precursors. Journal of the Brazilian Chemical Society, 2015, , .	0.6	2
164	Spectroscopic Study of the Interaction of Nd3+ with Amino Acids: Phenomenological 4f-4f Intensity Parameters. Journal of the Brazilian Chemical Society, 1998, 9, 487-493.	0.6	1
165	Theoretical model for multiphoton transitions in rare earth ions. Molecular Physics, 1982, 47, 925-931.	1.7	0
166	Raman scattering by small metallic particles in amorphous media. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 125, 80-82.	2.1	0
167	Vasoactive Thiomethyl-Pyrimidines: Promising Drug Candidates with Vascular Activity. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
168	GLASSY MATERIALS AND LIGHT: PART 1. Quimica Nova, 2016, , .	0.3	0
169	GLASSY MATERIALS AND LIGHT: PART 2. Quimica Nova, 2016, , .	0.3	0
170	Photoluminescent Investigation of the Doping Site of Eu3+-Doped [Zn3(BTC)2â^™12H2O] Metal-Organic Framework Prepared by Microwave-Assisted Hydrothermal Synthesis. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
171	Blue-Emitting MWO4:Tm3+ (M: Sr, Ba) Phosphors Prepared by Coprecipitation Method at Room Temperature. Journal of the Brazilian Chemical Society, 0, , .	0.6	Ο