ZoltÃ;n Pataj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11658159/publications.pdf

Version: 2024-02-01

28 papers 821 citations

430874 18 h-index 28 g-index

28 all docs

28 docs citations

28 times ranked 780 citing authors

#	Article	IF	CITATIONS
1	The Novel Lipopeptide Poaeamide of the Endophyte <i>Pseudomonas poae</i> RE*1-1-14 Is Involved in Pathogen Suppression and Root Colonization. Molecular Plant-Microbe Interactions, 2015, 28, 800-810.	2.6	105
2	Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: A review. Journal of Pharmaceutical and Biomedical Analysis, 2012, 69, 28-41.	2.8	95
3	Direct enantioseparation of underivatized aliphatic 3-hydroxyalkanoic acids with a quinine-based zwitterionic chiral stationary phase. Journal of Chromatography A, 2014, 1363, 101-108.	3.7	51
4	Macrocyclic Antibiotic Selectors in Direct HPLC Enantioseparations. Separation and Purification Reviews, 2012, 41, 207-249.	5.5	50
5	Enantiomeric separation of nonproteinogenic amino acids by high-performance liquid chromatography. Journal of Chromatography A, 2012, 1269, 94-121.	3.7	44
6	Discovery of the Cyclic Lipopeptide Gacamide A by Genome Mining and Repair of the Defective GacA Regulator in <i>Pseudomonas fluorescens</i> Pf0-1. Journal of Natural Products, 2019, 82, 301-308.	3.0	38
7	Unusual Temperatureâ€Induced Retention Behavior of Constrained βâ€Amino Acid Enantiomers on the Zwitterionic Chiral Stationary Phases ZWIX(+) and ZWIX(–). Chirality, 2014, 26, 385-393.	2.6	37
8	Direct high-performance liquid chromatographic enantioseparation of secondary amino acids on Cinchona alkaloid-based chiral zwitterionic stationary phases. Unusual temperature behavior. Journal of Chromatography A, 2014, 1363, 169-177.	3.7	33
9	High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases. Journal of Chromatography A, 2010, 1217, 6956-6963.	3.7	29
10	Determination of Acrylamide and Acrolein in Smoke from Tobacco and E-Cigarettes. Chromatographia, 2014, 77, 1145-1151.	1.3	28
11	Methods for the comprehensive structural elucidation of constitution and stereochemistry of lipopeptides. Journal of Chromatography A, 2016, 1428, 280-291.	3.7	28
12	High-performance liquid chromatographic enantioseparation of \hat{l}^2 -3-homo-amino acid stereoisomers on a (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phase. Journal of Chromatography A, 2008, 1189, 285-291.	3.7	27
13	Comparison of performance of Chirobiotic T, T2 and TAG columns in the separation of $\hat{l}^2 < \sup 2 < \sup \hat{a} \in \hat{l}^2 < \sup 3 < \sup \hat{a} \in \hat{l}^2 < \sup 3 < \sup \hat{a} \in \hat{l}^2 < \sup 3 < \sup 3 < \sup 3 \in \hat{l}^2 < \sup 3 < \sup 3 < \sup 3 < \sup 3 \in \hat{l}^2 < \sup 3 < \sup$	2.5	25
14	High-performance liquid chromatographic enantioseparation of 1-(phenylethylamino)- or 1-(naphthylethylamino)methyl-2-naphthol analogs and a temperature-induced inversion of the elution sequence on polysaccharide-based chiral stationary phases. Journal of Chromatography A, 2011, 1218, 4869-4876.	3.7	25
15	Effect of mobile phase composition on the liquid chromatographic enantioseparation of bulky monoterpene-based î²-amino acids by applying chiral stationary phases based on <i>Cinchona</i> Journal of Separation Science, 2014, 37, 1075-1082.	2.5	24
16	Highâ€performance liquid chromatographic enantioseparation of amino compounds on newly developed cyclofructanâ€based chiral stationary phases. Journal of Separation Science, 2012, 35, 617-624.	2.5	23
17	High-performance liquid chromatographic enantioseparation of \hat{l}^2 2-amino acids using a long-tethered (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phase. Journal of Chromatography A, 2010, 1217, 1075-1082.	3.7	18
18	High-performance liquid chromatographic separation of unusual $\hat{1}^2$ 3-amino acid enantiomers in different chromatographic modes on Cinchona alkaloid-based zwitterionic chiral stationary phases. Amino Acids, 2015, 47, 2279-2291.	2.7	18

ZoltÃin Pataj

#	Article	IF	CITATION
19	High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on macrocyclic glycopeptide-based chiral stationary phases. Journal of Chromatography A, 2012, 1232, 142-151.	3.7	17
20	Highâ€performance liquid chromatographic chiral separation of β ² â€homoamino acids. Chirality, 2009, 21, 787-798.	2.6	15
21	Enantioseparations by High-Performance Liquid Chromatography Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview. Methods in Molecular Biology, 2013, 970, 137-163.	0.9	14
22	Comparison of Separation Performances of Cellulose-Based Chiral Stationary Phases in LC Enantioseparation of Aminonaphthol Analogues. Chromatographia, 2009, 70, 723-729.	1.3	12
23	Comparison of separation performances of amyloseâ€and celluloseâ€based stationary phases in the highâ€performance liquid chromatographic enantioseparation of stereoisomers of βâ€lactams. Chirality, 2010, 22, 120-128.	2.6	12
24	CE Enantioseparation of Betti Bases with Cyclodextrins and Crown Ether as Chiral Selectors. Chromatographia, 2010, 71, 115-119.	1.3	11
25	High-performance liquid chromatographic enantioseparation of aminonaphthol analogs on polysaccharide-based chiral stationary phases. Journal of Chromatography A, 2010, 1217, 2980-2985.	3.7	11
26	Enantiomeric Separation of Bicyclo[2.2.2]octaneâ€Based 2â€Aminoâ€3â€Carboxylic Acids on Macrocyclic Glycopeptide Chiral Stationary Phases. Chirality, 2014, 26, 200-208.	2.6	11
27	LC Enantioseparation of \hat{l}^2 -Amino Acids on a Crown Ether-Based Stationary Phase. Chromatographia, 2008, 68, 13-18.	1.3	10
28	LC Separation of \hat{I}^3 -Amino Acid Enantiomers. Chromatographia, 2010, 71, 13-19.	1.3	10