Weifeng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11650199/publications.pdf

Version: 2024-02-01

430874 580821 27 1,823 18 25 citations g-index h-index papers 27 27 27 3346 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamical investigation of tunable magnetism in Au@Ni-carbide nanocrystals by a combined soft and hard X-ray absorption spectroscopy. Nano Research, 2022, 15, 4320-4326.	10.4	3
2	Long-range ordering and local structural disordering of BiAgSe2 and BiAgSeTe thermoelectrics. Physical Chemistry Chemical Physics, 2021, 23, 24328-24335.	2.8	1
3	A multi-purpose high-pressure and high temperature gas-flow cell for operando optical Raman spectroscopy. Review of Scientific Instruments, 2021, 92, 113003.	1.3	O
4	Unveiling the atomic defects and electronic structure of $Cu < sub > 2.2 < sub > 2.4 < sub > 2.4 < sub > 2.4 < sub > 2.5 < sub > 2.5 < sub > 3.6 < sub > 4.6 < sub > 3.6 < sub > 4.6 < s$	2.8	2
5	Three-dimensional hollow spheres of the tetragonal-spinel MgMn ₂ O ₄ cathode for high-performance magnesium ion batteries. Journal of Materials Chemistry A, 2018, 6, 8210-8214.	10.3	52
6	High pressure experimental studies on Na3Fe(PO4)(CO3) and Na3Mn(PO4)(CO3): Extensive pressure behaviors of carbonophosphates family. Journal of Physics and Chemistry of Solids, 2018, 115, 248-253.	4.0	5
7	Thermodynamic Activation of Charge Transfer in Anionic Redox Process for Liâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1704864.	14.9	49
8	Reversible Fe(<scp>ii</scp>) uptake/release by magnetite nanoparticles. Environmental Science: Nano, 2018, 5, 1545-1555.	4.3	20
9	High pressure structural investigation on alluaudites Na 2 Fe 3 (PO 4) 3 -Na 2 FeMn 2 (PO 4) 3 system. Journal of Solid State Chemistry, 2017, 247, 156-160.	2.9	4
10	Defectâ€Engineered Ultrathin Î'â€MnO ₂ Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1700005.	19.5	553
11	Water Splitting: Defectâ€Engineered Ultrathin δâ€MnO ₂ Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .	19.5	6
12	Application of Synchrotron Radiation Technologies to Electrode Materials for Liâ€and Naâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1700460.	19.5	39
13	Formation of graphene-encapsulated CoS ₂ hybrid composites with hierarchical structures for high-performance lithium-ion batteries. RSC Advances, 2017, 7, 39427-39433.	3.6	26
14	Remarkable SERS Activity Observed from Amorphous ZnO Nanocages. Angewandte Chemie - International Edition, 2017, 56, 9851-9855.	13.8	238
15	Remarkable SERS Activity Observed from Amorphous ZnO Nanocages. Angewandte Chemie, 2017, 129, 9983-9987.	2.0	47
16	Fabrication of graphene-encapsulated Na ₃ V ₂ (PO ₄) ₃ as high-performance cathode materials for sodium-ion batteries. RSC Advances, 2016, 6, 43591-43597.	3.6	39
17	Tuning the Electronic Structure of the Metal–Oxygen Group by Silicon Substitution in Lithium-Rich Manganese-Based Oxides for Superior Performance. Journal of Physical Chemistry C, 2016, 120, 13421-13426.	3.1	23
18	Sol–gel design strategy for embedded Na3V2(PO4)3 particles into carbon matrices for high-performance sodium-ion batteries. Carbon, 2016, 96, 1028-1033.	10.3	77

#	Article	IF	CITATIONS
19	Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping. Scientific Reports, 2015, 5, 9328.	3.3	84
20	Selfâ€Assembled Alluaudite Na ₂ Fe _{3â^²<i>x</i>} Mn _{<i>x</i>} (PO ₄) ₃ Micro/Nanocompounds for Sodiumâ€ion Battery Electrodes: A New Insight into Their Electronic and Geometric Structure. Chemistry - A European Journal, 2015, 21, 851-860.	3.3	63
21	A New Route Toward Improved Sodium Ion Batteries: A Multifunctional Fluffy Na _{0.67} FePO ₄ /CNT Nanocactus. Small, 2015, 11, 2170-2176.	10.0	43
22	Compressibility of carbonophosphate bradleyite Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy. Physics and Chemistry of Minerals, 2015, 42, 191-201.	0.8	16
23	Manipulating the Electronic Structure of Liâ€Rich Manganeseâ€Based Oxide Using Polyanions: Towards Better Electrochemical Performance. Advanced Functional Materials, 2014, 24, 5112-5118.	14.9	259
24	Phase Separations in LiFe _{1–<i>x</i>} Mn _{<i>x</i>} PO ₄ : A Random Stack Model for Efficient Cathode Materials. Journal of Physical Chemistry C, 2014, 118, 796-803.	3.1	31
25	Depressed transition temperature of W _x V _{1â^'x} O ₂ : mechanistic insights from the X-ray absorption fine structure (XAFS) spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 17705.	2.8	66
26	Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries. Scientific Reports, 2014, 4, 4188.	3.3	75
27	A self-acting water pump control system for residential buildings based on resonance water level sensor. , 2011, , .		2