Harald Auge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1164616/publications.pdf

Version: 2024-02-01

101543 102487 4,745 84 36 66 h-index citations g-index papers 90 90 90 6697 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 2005, 144, 1-11.	2.0	875
2	Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio, 2016, 45, 29-41.	5 . 5	203
3	Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Molecular Ecology, 2005, 14, 1697-1706.	3.9	189
4	A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 281-291.	2.7	179
5	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	8.0	177
6	Reduced competitive ability in an invasive plant. Ecology Letters, 2004, 7, 346-353.	6.4	152
7	Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 2015, 103, 978-989.	4.0	131
8	For the sake of resilience and multifunctionality, let's diversify planted forests!. Conservation Letters, 2022, 15, e12829.	5.7	124
9	Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia, 2007, 153, 501-510.	2.0	117
10	Palatability, decomposition and insect herbivory: patterns in a successional old-field plant community. Oikos, 2003, 103, 121-132.	2.7	112
11	Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nature Ecology and Evolution, 2017, 1, 1639-1642.	7.8	95
12	Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (<scp>CAFE</scp>) approach. Ecology Letters, 2018, 21, 167-180.	6.4	94
13	A million and more trees for science. Nature Ecology and Evolution, 2018, 2, 763-766.	7.8	90
14	Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system. Oecologia, 2009, 160, 267-277.	2.0	86
15	Tree diversity and the role of nonâ€host neighbour tree species in reducing fungal pathogen infestation. Journal of Ecology, 2014, 102, 1673-1687.	4.0	85
16	Investigating the consequences of climate change under different landâ€use regimes: a novel experimental infrastructure. Ecosphere, 2019, 10, e02635.	2.2	85
17	Palatability and tolerance to simulated herbivory in native and introduced populations of <i>Alliaria petiolata</i> (Brassicaceae). American Journal of Botany, 2004, 91, 856-862.	1.7	83
18	Different gardens, different results: native and introduced populations exhibit contrasting phenotypes across common gardens. Oecologia, 2008, 157, 239-248.	2.0	83

#	Article	IF	CITATIONS
19	Secondary succession is influenced by belowground insect herbivory on a productive site. Oecologia, 2004, 138, 242-252.	2.0	76
20	The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Scientific Reports, 2019, 9, 639.	3.3	72
21	Spread of violets in polluted pine forests: morphological and molecular evidence for the ecological importance of interspecific hybridization. Molecular Ecology, 1999, 8, 365-377.	3.9	68
22	Impact of invertebrate herbivory in grasslands depends on plant species diversity. Ecology, 2010, 91, 1639-1650.	3.2	67
23	We need more realistic climate change experiments for understanding ecosystems of the future. Global Change Biology, 2020, 26, 325-327.	9.5	65
24	Demographic and random amplified polymorphic DNA analyses reveal high levels of genetic diversity in a clonal violet. Molecular Ecology, 2001, 10, 1811-1819.	3.9	63
25	The invasive shrub <i>Buddleja davidii</i> performs better in its introduced range. Diversity and Distributions, 2008, 14, 225-233.	4.1	61
26	Testing hypotheses for exotic plant success: parallel experiments in the native and introduced ranges. Ecology, 2010, 91, 1355-1366.	3.2	59
27	Predicting the spread of an invasive plant: combining experiments and ecological niche model. Ecography, 2008, 31, 709-719.	4.5	56
28	Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology and Biochemistry, 2019, 131, 141-148.	8.8	56
29	How do extreme drought and plant community composition affect host plant metabolites and herbivore performance?. Arthropod-Plant Interactions, 2012, 6, 15-25.	1.1	53
30	Seedling recruitment in the invasive clonal shrub, Mahonia aquifolium Pursh (Nutt.). Oecologia, 1997, 110, 205-211.	2.0	50
31	Staged invasions across disparate grasslands: effects of seed provenance, consumers and disturbance on productivity and species richness. Ecology Letters, 2014, 17, 499-507.	6.4	47
32	Dispersal and seed limitation affect diversity and productivity of montane grasslands. Oikos, 2008, 117, 1469-1478.	2.7	45
33	Multiple common garden experiments suggest lack of local adaptation in an invasive ornamental plant. Journal of Plant Ecology, 2011, 4, 209-220.	2.3	45
34	Processes affecting altitudinal distribution of invasive Ageratina adenophora in western Himalaya: The role of local adaptation and the importance of different life-cycle stages. PLoS ONE, 2017, 12, e0187708.	2.5	45
35	Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nature Communications, 2021, 12, 2489.	12.8	43
36	Geographic variation in the response to drought in nine grassland species. Basic and Applied Ecology, 2011, 12, 21-28.	2.7	42

#	Article	IF	CITATIONS
37	Title is missing!. Biodiversity and Conservation, 2001, 10, 1497-1511.	2.6	39
38	Driving mechanisms of overstorey–understorey diversity relationships in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 19, 21-29.	2.7	36
39	Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. European Journal of Soil Biology, 2015, 67, 17-26.	3.2	35
40	Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity. Oecologia, 2009, 159, 191-205.	2.0	33
41	Tree species identity determines wood decomposition via microclimatic effects. Ecology and Evolution, 2019, 9, 12113-12127.	1.9	33
42	Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts. Oikos, 2020, 129, 445-456.	2.7	33
43	Herbivore preference drives plant community composition. Ecology, 2015, 96, 2923-2934.	3.2	31
44	Compensatory mechanisms of litter decomposition under alternating moisture regimes in tropical rice fields. Applied Soil Ecology, 2016, 107, 79-90.	4.3	31
45	Adaptive and Selective Seed Abortion Reveals Complex Conditional Decision Making in Plants. American Naturalist, 2014, 183, 376-383.	2.1	30
46	Genetic variation in Sanguisorba minor after 6 years in situ selection under elevated CO2. Global Change Biology, 2004, 10, 1389-1401.	9.5	28
47	Mahonia invasions in different habitats: local adaptation or general-purpose genotypes?. Biological Invasions, 2009, 11, 441-452.	2.4	28
48	Small-scale variability in the contribution of invertebrates to litter decomposition in tropical rice fields. Basic and Applied Ecology, 2015, 16, 674-680.	2.7	25
49	Land use causes genetic differentiation of lifeâ€history traits in <i>Bromus hordeaceus</i> . Global Change Biology, 2013, 19, 892-899.	9.5	23
50	Does the Fretwell-Oksanen model apply to invertebrates?. Oikos, 2003, 100, 203-207.	2.7	22
51	Regional adaptation improves the performance of grassland plant communities. Basic and Applied Ecology, 2012, 13, 551-559.	2.7	22
52	Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community. PLoS ONE, 2015, 10, e0134402.	2.5	22
53	Evolutionary responses to land use in eight common grassland plants. Journal of Ecology, 2017, 105, 1290-1297.	4.0	21
54	Seasonal changes in the relationship between plant species richness and community biomass in early succession. Basic and Applied Ecology, 2005, 6, 385-394.	2.7	20

#	Article	IF	Citations
55	Geographical and land-use effects on seed-mass variation in common grassland plants. Basic and Applied Ecology, 2012, 13, 395-404.	2.7	19
56	Does insect herbivory on oak depend on the diversity of tree stands?. Basic and Applied Ecology, 2014, 15, 685-692.	2.7	19
57	Reducing dispersal limitation via seed addition increases species richness but not aboveâ€ground biomass. Ecology Letters, 2020, 23, 1442-1450.	6.4	19
58	Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Global Ecology and Biogeography, 2022, 31, 872-885.	5.8	16
59	Invasive Mahonia plants outgrow their native relatives. Plant Ecology, 2008, 199, 21-31.	1.6	15
60	Land Use Options – Strategies and Adaptation to Global Change – Terrestrial Environmental Research. Gaia, 2009, 18, 77-80.	0.7	15
61	Mechanisms driving diversity–productivity relationships differ between exotic and native communities and are affected by gastropod herbivory. Oecologia, 2016, 180, 1025-1036.	2.0	13
62	Spatiotemporal dynamics of abiotic and biotic properties explain biodiversity–ecosystemâ€functioning relationships. Ecological Monographs, 2022, 92, e01490.	5.4	13
63	Resource dynamics in an early-successional plant community are influenced by insect exclusion. Soil Biology and Biochemistry, 2004, 36, 1817-1826.	8.8	12
64	Genetic relationships among three native North-American Mahonia species, invasive Mahonia populations from Europe, and commercial cultivars. Plant Systematics and Evolution, 2008, 275, 219-229.	0.9	11
65	Stronger effect of gastropods than rodents on seedling establishment, irrespective of exotic or native plant species origin. Oikos, 2016, 125, 1467-1477.	2.7	11
66	Tree diversity modifies distanceâ€dependent effects on seedling emergence but not plant–soil feedbacks of temperate trees. Ecology, 2015, 96, 1529-1539.	3.2	10
67	How do trees respond to species mixing in experimental compared to observational studies?. Ecology and Evolution, 2019, 9, 11254-11265.	1.9	8
68	The study of the variability of biomass from plants of the Elodea genus from a river in Germany over a period of two hydrological years for investigating their suitability for biogas production. Energy, Sustainability and Society, 2017, 7, .	3.8	7
69	Drought resistance of native pioneer species indicates potential suitability for restoration of post-mining areas. Web Ecology, 2014, 14, 65-74.	1.6	7
70	Outcrossing breeding system does not compromise invasiveness in Buddleja davidii. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 843-848.	1.2	6
71	Performance and responses to competition in two congeneric annual species: does seed heteromorphism matter?. Plant Biology, 2015, 17, 1203-1209.	3.8	6
72	Environment rather than genetic background explains intraspecific variation in the protein-precipitating capacity of phenolic compounds in beech litter. Plant Ecology and Diversity, 2015, 8, 73-79.	2.4	6

#	Article	lF	CITATIONS
73	Foliar Fungal Endophytes in a Tree Diversity Experiment Are Driven by the Identity but Not the Diversity of Tree Species. Life, 2021, 11, 1081.	2.4	6
74	Interactions count: plant origin, herbivory and disturbance jointly explain seedling recruitment and community structure. Scientific Reports, 2017, 7, 8288.	3.3	5
75	Release from Above- and Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant. Plants, 2019, 8, 544.	3.5	5
76	Abundance, origin, and phylogeny of plants do not predict communityâ€level patterns of pathogen diversity and infection. Ecology and Evolution, 2020, 10, 5506-5516.	1.9	5
77	Effects of altitude, land use and microsites on early life performance of a high mountain tree: Insights from an in situ sowing experiment. Diversity and Distributions, 2019, 25, 1537-1550.	4.1	4
78	Understanding plant communities of the future requires filling knowledge gaps. Global Change Biology, 2020, 26, 328-329.	9 . 5	4
79	Abiotic factors are more important than land management and biotic interactions in shaping vascular plant and soil fungal communities. Global Ecology and Conservation, 2022, 33, e01960.	2.1	4
80	Effects of climate change and pollen supplementation on the reproductive success of two grassland plant species. Ecology and Evolution, 2022, 12, e8501.	1.9	4
81	Pre-adaptations and shifted chemical defences provide Buddleja davidii populations with high resistance against antagonists in the invasive range. Biological Invasions, 2019, 21, 333-347.	2.4	2
82	Natural enemies do not contribute to negative frequency-dependence in native and exotic grassland plants. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 46, 125565.	2.7	2
83	Invasion science, ecology and economics: seeking roads not taken. NeoBiota, 0, 10, 1-5.	1.0	2
84	Scaleâ€dependent impact of land management on above―and belowground biodiversity. Ecology and Evolution, 2020, 10, 10139-10149.	1.9	1