
Simon Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1164589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Essential <i>Bacillus subtilis</i> genes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4678-4683.	7.1	1,261
2	An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nature Immunology, 2003, 4, 702-707.	14.5	1,139
3	Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiology Reviews, 2008, 32, 259-286.	8.6	725
4	Alternatives to antibiotics—a pipeline portfolio review. Lancet Infectious Diseases, The, 2016, 16, 239-251.	9.1	720
5	Ïf ^B Modulates Virulence Determinant Expression and Stress Resistance: Characterization of a Functional <i>rsbU</i> Strain Derived from <i>Staphylococcus aureus</i> 8325-4. Journal of Bacteriology, 2002, 184, 5457-5467.	2.2	625
6	A ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells. Nature Chemistry, 2009, 1, 662-667.	13.6	436
7	Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology (United) Tj ETQq1 1 0.784	4314 rgBT 1.8	/Oyerlock 10
8	PerR Controls Oxidative Stress Resistance and Iron Storage Proteins and Is Required for Virulence in <i>Staphylococcus aureus</i> . Infection and Immunity, 2001, 69, 3744-3754.	2.2	299
9	Catalase (KatA) and Alkyl Hydroperoxide Reductase (AhpC) Have Compensatory Roles in Peroxide Stress Resistance and Are Required for Survival, Persistence, and Nasal Colonization in Staphylococcus aureus. Journal of Bacteriology, 2007, 189, 1025-1035.	2.2	268
10	Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics, 2009, 10, 291.	2.8	253
11	In Staphylococcus aureus , Fur Is an Interactive Regulator with PerR, Contributes to Virulence, and Is Necessary for Oxidative Stress Resistance through Positive Regulation of Catalase and Iron Homeostasis. Journal of Bacteriology, 2001, 183, 468-475.	2.2	252
12	Surface Adhesins of Staphylococcus aureus. Advances in Microbial Physiology, 2006, 51, 187-224.	2.4	237
13	The architecture of the Gram-positive bacterial cell wall. Nature, 2020, 582, 294-297.	27.8	223
14	MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Molecular Microbiology, 2002, 44, 1269-1286.	2.5	220
15	The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology (United Kingdom), 2004, 150, 217-228.	1.8	215
16	Analysis of Peptidoglycan Structure from Vegetative Cells of <i>Bacillus subtilis</i> 168 and Role of PBP 5 in Peptidoglycan Maturation. Journal of Bacteriology, 1999, 181, 3956-3966.	2.2	208
17	Cell wall peptidoglycan architecture in <i>Bacillus subtilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14603-14608.	7.1	207
18	The <i>Staphylococcus aureus</i> Alternative Sigma Factor Ï, ^B Controls the Environmental Stress Response but Not Starvation Survival or Pathogenicity in a Mouse Abscess Model. Journal of Bacteriology, 1998, 180, 6082-6089.	2.2	186

#	Article	IF	CITATIONS
19	A novel vertebrate model of <i>Staphylococcus aureus</i> infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cellular Microbiology, 2008, 10, 2312-2325.	2.1	185
20	Identification of In Vivo–Expressed Antigens ofStaphylococcus aureusand Their Use in Vaccinations for Protection against Nasal Carriage. Journal of Infectious Diseases, 2006, 193, 1098-1108.	4.0	183
21	The Staphylococcus aureus Surface Protein IsdA Mediates Resistance to Innate Defenses of Human Skin. Cell Host and Microbe, 2007, 1, 199-212.	11.0	180
22	Characterization of the Starvation-Survival Response of <i>Staphylococcus aureus</i> . Journal of Bacteriology, 1998, 180, 1750-1758.	2.2	178
23	Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. Journal of Bacteriology, 1992, 174, 464-470.	2.2	169
24	Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology (United) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 50
25	Molecular basis for bacterial peptidoglycan recognition by LysM domains. Nature Communications, 2014, 5, 4269.	12.8	167
26	Characterization of IsaA and SceD, Two Putative Lytic Transglycosylases of <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2007, 189, 7316-7325.	2.2	162
27	Different walls for rods and balls: the diversity of peptidoglycan. Molecular Microbiology, 2014, 91, 862-874.	2.5	150
28	The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology (United) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 382
29	Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. Journal of Bacteriology, 1995, 177, 5723-5725.	2.2	144
30	Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. Journal of Bacteriology, 1996, 178, 6173-6183.	2.2	141
31	Staphylococcus aureus infection dynamics. PLoS Pathogens, 2018, 14, e1007112.	4.7	137
32	The Role of Macrophages in Staphylococcus aureus Infection. Frontiers in Immunology, 2020, 11, 620339.	4.8	129

32	620339.	4.8	129
33	Analysis of Ebh, a 1.1-Megadalton Cell Wall-Associated Fibronectin-Binding Protein of Staphylococcus aureus. Infection and Immunity, 2002, 70, 6680-6687.	2.2	127
34	Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nature Communications, 2013, 4, 1496.	12.8	125
35	Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology (United Kingdom), 2002, 148, 2383-2392.	1.8	125
36	IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Molecular Microbiology, 2004, 51, 1509-1519.	2.5	122

3

#	Article	IF	CITATIONS
37	The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus 8325-4. Microbiology (United Kingdom), 1998, 144, 2469-2479.	1.8	121
38	Desiccation tolerance in Staphylococcus aureus. Archives of Microbiology, 2011, 193, 125-135.	2.2	121
39	Pulling the trigger: the mechanism of bacterial spore germination. Molecular Microbiology, 1990, 4, 137-141.	2.5	116
40	Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nature Communications, 2010, 1, 26.	12.8	114
41	Superâ€resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Molecular Microbiology, 2011, 82, 1096-1109.	2.5	111
42	A privileged intraphagocyte niche is responsible for disseminated infection of <i> <scp>S</scp> taphylococcus aureus </i> in a zebrafish model. Cellular Microbiology, 2012, 14, 1600-1619.	2.1	107
43	A single natural nucleotide mutation alters bacterial pathogen host tropism. Nature Genetics, 2015, 47, 361-366.	21.4	106
44	Intracellular <i>Staphylococcus aureus</i> eludes selective autophagy by activating a host cell kinase. Autophagy, 2016, 12, 2069-2084.	9.1	97
45	Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. Journal of General Microbiology, 1991, 137, 1987-1998.	2.3	95
46	Drosophila melanogaster as a model host for Staphylococcus aureus infection. Microbiology (United) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
47	Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. Journal of Bacteriology, 1995, 177, 3855-3862.	2.2	84
48	Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases. MBio, 2015, 6, e00660.	4.1	83
49	Multiple essential roles for EzrA in cell division of <i>Staphylococcus aureus</i> . Molecular Microbiology, 2011, 80, 542-555.	2.5	81
50	Molecular analysis of three major wall-associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein. Molecular Microbiology, 1993, 8, 299-310.	2.5	80
51	Human skin commensals augment Staphylococcus aureus pathogenesis. Nature Microbiology, 2018, 3, 881-890.	13.3	80
52	A Polysaccharide Deacetylase Gene (pdaA) Is Required for Germination and for Production of Muramic δ-Lactam Residues in the Spore Cortex of Bacillus subtilis. Journal of Bacteriology, 2002, 184, 6007-6015.	2.2	79
53	zur: a Zn2+-responsive regulatory element of Staphylococcus aureus The GenBank accession number for the sequence reported in this paper is AF101263 Microbiology (United Kingdom), 2001, 147, 1259-1266.	1.8	79
54	Iron-Regulated Surface Determinant Protein A Mediates Adhesion of <i>Staphylococcus aureus</i> to Human Corneocyte Envelope Proteins. Infection and Immunity, 2009, 77, 2408-2416.	2.2	78

#	Article	IF	CITATIONS
55	Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nature Communications, 2018, 9, 1263.	12.8	78
56	Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology (United Kingdom), 2000, 146, 57-64.	1.8	76
57	Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy, 2009, 109, 775-780.	1.9	74
58	Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention. PLoS Pathogens, 2014, 10, e1003959.	4.7	73
59	Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis. Microbiology (United Kingdom), 2003, 149, 695-705.	1.8	72
60	Sigma Factor B and RsbU Are Required for Virulence in Staphylococcus aureus -Induced Arthritis and Sepsis. Infection and Immunity, 2004, 72, 6106-6111.	2.2	72
61	The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination. Antonie Van Leeuwenhoek, 1999, 75, 299-307.	1.7	70
62	Molecular coordination of Staphylococcus aureus cell division. ELife, 2018, 7, .	6.0	69
63	Interactive regulatory pathways control virulence determinant production and stability in response to environmental conditions in Staphylococcus aureus. Molecular Genetics and Genomics, 1999, 262, 323-331.	2.4	68
64	A Spaetzle-like role for nerve growth factor Î ² in vertebrate immunity to <i>Staphylococcus aureus</i> . Science, 2014, 346, 641-646.	12.6	68
65	Purification and properties of a germination-specific cortex-lytic enzyme from spores of <i>Bacillus megaterium</i> KM. Biochemical Journal, 1987, 242, 573-579.	3.7	67
66	Analysis of the role of bacterial endospore cortex structure in resistance properties and demonstration of its conservation amongst species. Journal of Applied Microbiology, 2001, 91, 364-372.	3.1	66
67	Hypoxia determines survival outcomes of bacterial infection through HIF-1α–dependent reprogramming of leukocyte metabolism. Science Immunology, 2017, 2, .	11.9	61
68	IsdA Protects <i>Staphylococcus aureus</i> against the Bactericidal Protease Activity of Apolactoferrin. Infection and Immunity, 2008, 76, 1518-1526.	2.2	60
69	Bactericidal Activity of the Human Skin Fatty Acid <i>cis</i> -6-Hexadecanoic Acid on Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 3599-3609.	3.2	58
70	Bacterial endospores the ultimate survivors. International Dairy Journal, 2002, 12, 217-223.	3.0	57
71	Molecular Bases Determining Daptomycin Resistance-Mediated Resensitization to \hat{I}^2 -Lactams (Seesaw) Tj ETQq1 61, .	1 0.7843 3.2	14 rgBT /Ove 54
72	Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a. Nanotechnology, 2014, 25, 285101.	2.6	53

#	Article	IF	CITATIONS
73	Identification of Staphylococcus aureus Factors Required for Pathogenicity and Growth in Human Blood. Infection and Immunity, 2017, 85, .	2.2	53
74	Isolation and characterization of Staphylococcus aureus starvat ion4 nduced, stationary-phase mutants defective in survival or recovery. Microbiology (United Kingdom), 1998, 144, 3159-3169.	1.8	52
75	The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus. Biophysical Journal, 2014, 107, 2538-2545.	0.5	52
76	Starvation survival in Listeria monocytogenes: characterization of the response and the role of known and novel components. Microbiology (United Kingdom), 2001, 147, 2275-2284.	1.8	52
77	Role of the hprT–ftsH locus in Staphylococcus aureus. Microbiology (United Kingdom), 2004, 150, 373-381.	1.8	51
78	Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. Microbiology (United Kingdom), 1998, 144, 1359-1367.	1.8	46
79	Investigations into σ B -Modulated Regulatory Pathways Coverning Extracellular Virulence Determinant Production in Staphylococcus aureus. Journal of Bacteriology, 2006, 188, 6070-6080.	2.2	44
80	Identification and Analysis of Staphylococcus aureus Components Expressed by a Model System of Growth in Serum. Infection and Immunity, 2001, 69, 5198-5202.	2.2	43
81	Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureusÂis associated with RNA Polymerase alterations and fine tuning of gene expression. PLoS Pathogens, 2020, 16, e1008672.	4.7	43
82	Staphylococcus aureus: the search for novel targets. Drug Discovery Today, 2005, 10, 643-651.	6.4	42
83	A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase. PLoS ONE, 2019, 14, e0215592.	2.5	42
84	In vivo roles of the germination-specific lytic enzymes of Bacillus subtilis 168. Microbiology (United) Tj ETQq0 0 () rgBT /Ov 1.8	erlock 10 Tf 5
85	A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 666-676.	1.8	40
86	Zebrafish as a Novel Vertebrate Model To Dissect Enterococcal Pathogenesis. Infection and Immunity, 2013, 81, 4271-4279.	2.2	40
87	The role and regulation of cell wall structural dynamics during differentiation of endosporeâ€forming bacteria. Journal of Applied Bacteriology, 1994, 76, 25S-39S.	1.1	38
88	Ruthenium based antimicrobial theranostics – using nanoscopy to identify therapeutic targets and resistance mechanisms in <i>Staphylococcus aureus</i> . Chemical Science, 2020, 11, 70-79.	7.4	37
89	Germination-specific cortex-lytic enzyme is activated during triggering of Bacillus megaterium KM spore germination. Molecular Microbiology, 1988, 2, 727-733.	2.5	36

⁹⁰Staphylococcus aureus cell wall structure and dynamics during host-pathogen interaction. PLoS4.73691Pathogens, 2021, 17, e1009468.4.7

#	Article	IF	CITATIONS
91	Structural analysis of Bacillus megaterium KM spore peptidoglycan and its dynamics during germination. Microbiology (United Kingdom), 1999, 145, 1033-1041.	1.8	34
92	The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein. PLoS Pathogens, 2017, 13, e1006110.	4.7	33
93	Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. Microbiology (United Kingdom), 2015, 161, 621-627.	1.8	30
94	Demonstration of the role of cell wall homeostasis in <i>Staphylococcus aureus</i> growth and the action of bactericidal antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
95	Staphylococcus aureusâ€DivIBis a peptidoglycanâ€binding protein that is required for a morphological checkpoint in cell division. Molecular Microbiology, 2014, 94, 1041-1064.	2.5	29
96	Coordination of Chromosome Segregation and Cell Division in Staphylococcus aureus. Frontiers in Microbiology, 2017, 8, 1575.	3.5	29
97	The effect of skin fatty acids on Staphylococcus aureus. Archives of Microbiology, 2015, 197, 245-267.	2.2	28
98	Existence of a ColonizingStaphylococcus aureusStrain Isolated in Diabetic Foot Ulcers. Diabetes, 2015, 64, 2991-2995.	0.6	28
99	YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability. BMC Microbiology, 2009, 9, 266.	3.3	27
100	Supramolecular structure in the membrane ofStaphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15725-15730.	7.1	26
101	SosA inhibits cell division in <i>Staphylococcus aureus</i> in response to DNA damage. Molecular Microbiology, 2019, 112, 1116-1130.	2.5	26
102	Mononuclear ruthenium(<scp>ii</scp>) theranostic complexes that function as broad-spectrum antimicrobials in therapeutically resistant pathogens through interaction with DNA. Chemical Science, 2020, 11, 8828-8838.	7.4	26
103	Scratching the Surface: Bacterial Cell Envelopes at the Nanoscale. MBio, 2020, 11, .	4.1	25
104	Staphylococcus aureus: setting its sights on the human innate immune system. Microbiology (United) Tj ETQqO	0	Dverlock 101
105	Analysis of Bacillus subtilis 168 prophage-associated lytic enzymes; identification and characterization of CWLA-related prophage proteins. Journal of General Microbiology, 1993, 139, 3177-3184.	2.3	24
106	Negative and positive ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and positive ion nano-electrospray ionization quadrupole ion trap mass spectrometry of peptidoglycan fragments isolated from variousBacillusspecies. Journal of Mass Spectrometry, 2001, 36, 124-139.	1.6	24
107	Neutrophils use selective autophagy receptor Sqstm1/p62 to target <i>Staphylococcus aureus</i> for degradation <i>in vivo</i> in zebrafish. Autophagy, 2021, 17, 1448-1457.	9.1	21

108The iron-regulated surface proteins IsdA,IsdB, and IsdH are not required for heme iron utilization in
Staphylococcus aureus. FEMS Microbiology Letters, 2012, 329, 93-100.1.820

#	Article	IF	CITATIONS
109	Anti-Staphylococcus aureus immunotherapy: current status and prospects. Current Opinion in Pharmacology, 2009, 9, 552-557.	3.5	19
110	Impact of the β-Lactam Resistance Modifier (â^')-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus. International Journal of Molecular Sciences, 2015, 16, 16710-16727.	4.1	19
111	An automated image analysis framework for segmentation and division plane detection of single live <i>Staphylococcus aureus</i> cells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy. Physical Biology, 2016, 13, 055002.	1.8	19
112	Heterogeneous localisation of membrane proteins in Staphylococcus aureus. Scientific Reports, 2018, 8, 3657.	3.3	18
113	The Impact of Hypoxia on the Host-Pathogen Interaction between Neutrophils and Staphylococcus aureus. International Journal of Molecular Sciences, 2019, 20, 5561.	4.1	18
114	Identification of a Quorum Sensing-Dependent Communication Pathway Mediating Bacteria-Gut-Brain Cross Talk. IScience, 2020, 23, 101695.	4.1	18
115	PheP, a Putative Amino Acid Permease of Staphylococcus aureus , Contributes to Survival In Vivo and during Starvation. Infection and Immunity, 2004, 72, 3073-3076.	2.2	17
116	Atomic Force Microscopy Analysis of Bacterial Cell Wall Peptidoglycan Architecture. Methods in Molecular Biology, 2016, 1440, 3-9.	0.9	17
117	A Genome-Wide Screen Identifies Factors Involved in S. aureus-Induced Human Neutrophil Cell Death and Pathogenesis. Frontiers in Immunology, 2019, 10, 45.	4.8	16
118	The major autolysin is redundant for <i>Staphylococcus aureus</i> USA300 LAC JE2 virulence in a murine device-related infection model. FEMS Microbiology Letters, 2016, 363, fnw087.	1.8	15
119	Inhibiting Glycogen Synthase Kinase $3\hat{l}^2$ in Sepsis. Novartis Foundation Symposium, 0, , 128-146.	1.1	13
120	Identification of conserved antigens from staphylococcal and streptococcal pathogens. Journal of Medical Microbiology, 2012, 61, 766-779.	1.8	12
121	An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiology and Molecular Biology Reviews, 2022, 86, e0015921.	6.6	12
122	Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division. MBio, 2022, 13, .	4.1	11
123	Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathogens, 2021, 17, e1009880.	4.7	8
124	Correlative Super-Resolution Optical and Atomic Force Microscopy Reveals Relationships Between Bacterial Cell Wall Architecture and Synthesis in <i>Bacillus subtilis</i> . ACS Nano, 2021, 15, 16011-16018.	14.6	7
125	The Staphylococcus aureus Alternative Sigma Factor Ï,B Controls the Environmental Stress Response but Not Starvation Survival or Pathogenicity in a Mouse Abscess Model. Journal of Bacteriology, 1998, 180, 6082-6089.	2.2	6
126	Purification and characterization of an â€Â~actomyosin' complex fromEscherichia coliW3110. FEMS Microbiology Letters, 1993, 110, 295-298.	1.8	4

#	Article	IF	CITATIONS
127	Construction and Use of Staphylococcus aureus Strains to Study Within-Host Infection Dynamics. Methods in Molecular Biology, 2018, 1736, 17-27.	0.9	2
128	Human-specific staphylococcal virulence factors enhance pathogenicity in a humanised zebrafish C5a receptor model. Journal of Cell Science, 2021, 134, .	2.0	2
129	N-Acetylmuramoyl-l-alanine amidase. , 2004, , 866-868.		1
130	The W-Acidic Motif of Histidine Kinase WalK Is Required for Signaling and Transcriptional Regulation in Streptococcus mutans. Frontiers in Microbiology, 2022, 13, 820089.	3.5	1
131	Use of Larval Zebrafish Model to Study Within-Host Infection Dynamics. Methods in Molecular Biology, 2018, 1736, 147-156.	0.9	0
132	Title is missing!. , 2020, 16, e1008672.		0
133	Title is missing!. , 2020, 16, e1008672.		0
134	Title is missing!. , 2020, 16, e1008672.		0
135	Title is missing!. , 2020, 16, e1008672.		0
136	Title is missing!. , 2020, 16, e1008672.		0
137	Title is missing!. , 2020, 16, e1008672.		0