Christopher J Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11645797/publications.pdf

Version: 2024-02-01

24 papers 3,005 citations

361413 20 h-index 24 g-index

25 all docs

25 docs citations

25 times ranked

5801 citing authors

#	Article	IF	CITATIONS
1	MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature, 2015, 518, 107-110.	27.8	709
2	Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1695-704.	7.1	439
3	A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews Drug Discovery, 2015, 14, 239-247.	46.4	373
4	Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nature Materials, 2012, 11, 82-90.	27.5	360
5	In vivo correction of anaemia in \hat{l}^2 -thalassemic mice by \hat{l}^3 PNA-mediated gene editing with nanoparticle delivery. Nature Communications, 2016, 7, 13304.	12.8	143
6	miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer. Cancer Research, 2016, 76, 927-939.	0.9	128
7	Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides. Biomaterials, 2011, 32, 6194-6203.	11.4	106
8	Polymer Nanoparticle-Mediated Delivery of MicroRNA Inhibition and Alternative Splicing. Molecular Pharmaceutics, 2012, 9, 1481-1488.	4.6	84
9	miR-155 Is Essential for Inflammation-Induced Hippocampal Neurogenic Dysfunction. Journal of Neuroscience, 2015, 35, 9764-9781.	3.6	83
10	Surface modified poly(\hat{l}^2 amino ester)-containing nanoparticles for plasmid DNA delivery. Journal of Controlled Release, 2012, 164, 41-48.	9.9	75
11	Systemic delivery of blood–brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. Journal of Drug Targeting, 2015, 23, 736-749.	4.4	73
12	Sustained delivery of proangiogenic microRNAâ€132 by nanoparticle transfection improves endothelial cell transplantation. FASEB Journal, 2014, 28, 908-922.	0.5	72
13	Nanoparticles for urothelium penetration and delivery of the histone deacetylase inhibitor belinostat for treatment of bladder cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1124-1134.	3.3	51
14	A "top-down―approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery. Biomaterials, 2018, 176, 122-130.	11.4	49
15	The Duality of OncomiR Addiction in the Maintenance and Treatment of Cancer. Cancer Journal (Sudbury, Mass), 2012, 18, 232-237.	2.0	48
16	Canonical and Non-Canonical Barriers Facing AntimiR Cancer Therapeutics. Current Medicinal Chemistry, 2013, 20, 3582-3593.	2.4	48
17	Regeneration of mammalian cochlear and vestibular hair cells through Hes1/Hes5 modulation with siRNA. Hearing Research, 2013, 304, 91-110.	2.0	34
18	Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3062-71.	7.1	31

#	Article	IF	CITATIONS
19	Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nature Communications, 2021, 12, 4219.	12.8	29
20	Exercise and weight loss interventions and miRNA expression in women with breast cancer. Breast Cancer Research and Treatment, 2018, 170, 55-67.	2.5	25
21	miR-155 drives oncogenesis by promoting and cooperating with mutations in the c-Kit oncogene. Oncogene, 2019, 38, 2151-2161.	5.9	21
22	Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6597-605.	7.1	11
23	Leveraging Rational Protein Engineering to Improve mRNA Therapeutics. Nucleic Acid Therapeutics, 2018, 28, 74-85.	3.6	8
24	A novel polymer-coated nanoparticle (NP) for urothelium penetration and drug delivery Journal of Clinical Oncology, 2013, 31, e15543-e15543.	1.6	0