Roland R Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11645297/publications.pdf

Version: 2024-02-01

66 papers

3,109 citations

30 h-index 54 g-index

66 all docs 66 docs citations

66 times ranked 3275 citing authors

#	Article	IF	CITATIONS
1	The Natural History of Cavernous Malformations: A Prospective Study of 68 Patients. Neurosurgery, 1999, 44, 1166-1173.	1.1	248
2	Magnetoencephalographic Patterns of Epileptiform Activity in Children With Regressive Autism Spectrum Disorders. Pediatrics, 1999, 104, 405-418.	2.1	238
3	Integrated Imaging Approach with MEG and DTI to Detect Mild Traumatic Brain Injury in Military and Civilian Patients. Journal of Neurotrauma, 2009, 26, 1213-1226.	3.4	194
4	Neural representation of interval encoding and decision making. Cognitive Brain Research, 2004, 21, 193-205.	3.0	168
5	Dynamic nature of cavernous malformations: a prospective magnetic resonance imaging study with volumetric analysis. Journal of Neurosurgery, 2000, 93, 981-986.	1.6	155
6	Does the representation of time depend on the cerebellum?: Effect of cerebellar stroke. Brain, 2003, 127, 561-574.	7.6	153
7	Xenomelia: a new right parietal lobe syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1314-1319.	1.9	145
8	Vector-based spatial–temporal minimum L1-norm solution for MEG. NeuroImage, 2006, 31, 1025-1037.	4.2	104
9	An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage, 2012, 61, 1067-1082.	4.2	101
10	A novel integrated MEG and EEG analysis method for dipolar sources. NeuroImage, 2007, 37, 731-748.	4.2	100
11	Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. Neurolmage: Clinical, 2014, 5, 109-119.	2.7	85
12	A parietal–frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency. NeuroImage, 2005, 28, 99-114.	4.2	81
13	Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. Journal of Neurosurgery, 2000, 92, 79-90.	1.6	77
14	Neurobehavioral Mechanisms of Temporal Processing Deficits in Parkinson's Disease. PLoS ONE, 2011, 6, e17461.	2.5	77
15	Dual-Core Beamformer for obtaining highly correlated neuronal networks in MEG. NeuroImage, 2011, 54, 253-263.	4.2	66
16	Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement. Human Brain Mapping, 2004, 23, 26-39.	3.6	65
17	Voxel-wise resting-state MEG source magnitude imaging study reveals neurocircuitry abnormality in active-duty service members and veterans with PTSD. NeuroImage: Clinical, 2014, 5, 408-419.	2.7	62
18	Sources on the anterior and posterior banks of the central sulcus identified from magnetic somatosensory evoked responses using Multi-Start Spatio-Temporal localization. Human Brain Mapping, 2000, 11, 59-76.	3.6	61

#	Article	IF	CITATIONS
19	MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images. NeuroImage, 2014, 84, 585-604.	4.2	60
20	White-Matter Changes Correlate with Cognitive Functioning in Parkinson's Disease. Frontiers in Neurology, 2013, 4, 37.	2.4	53
21	Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task. Brain Topography, 2010, 23, 82-104.	1.8	51
22	Abnormal White Matter Blood-Oxygen-Level–Dependent Signals in Chronic Mild Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1254-1271.	3.4	50
23	A non-invasive method for observing hippocampal function. NeuroReport, 2003, 14, 1957-1960.	1.2	46
24	Resting-State Magnetoencephalography Reveals Different Patterns of Aberrant Functional Connectivity in Combat-Related Mild Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 1412-1426.	3.4	44
25	Quantitative P-31 MR spectroscopy of the liver in alcoholic cirrhosis. Journal of Magnetic Resonance Imaging, 1992, 2, 183-190.	3.4	41
26	Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury. Neurolmage: Clinical, 2015, 8, 210-223.	2.7	37
27	Evaluation of signal space separation via simulation. Medical and Biological Engineering and Computing, 2008, 46, 923-932.	2.8	35
28	Myelin Imaging in Human Brain Using a Short Repetition Time Adiabatic Inversion Recovery Prepared Ultrashort Echo Time (STAIR-UTE) MRI Sequence in Multiple Sclerosis. Radiology, 2020, 297, 392-404.	7.3	35
29	Signal Space Separation Algorithm and Its Application on Suppressing Artifacts Caused by Vagus Nerve Stimulation for Magnetoencephalography Recordings. Journal of Clinical Neurophysiology, 2009, 26, 392-400.	1.7	32
30	Magnetoencephalography Slow-Wave Detection in Patients with Mild Traumatic Brain Injury and Ongoing Symptoms Correlated with Long-Term Neuropsychological Outcome. Journal of Neurotrauma, 2015, 32, 1510-1521.	3.4	31
31	Temporal dynamics of age-related differences in auditory incidental verbal learning. Cognitive Brain Research, 2005, 24, 1-18.	3.0	30
32	High-resolution MEG source imaging approach to accurately localize Broca's area in patients with brain tumor or epilepsy. Clinical Neurophysiology, 2016, 127, 2308-2316.	1.5	30
33	Accurate reconstruction of temporal correlation for neuronal sources using the enhanced dual-core MEG beamformer. NeuroImage, 2011, 56, 1918-1928.	4.2	26
34	Age-related effects on superior temporal gyrus activity during an auditory oddball task. NeuroReport, 2005, 16, 1075-1079.	1.2	25
35	Marked Increases in Resting-State MEG Gamma-Band Activity in Combat-Related Mild Traumatic Brain Injury. Cerebral Cortex, 2020, 30, 283-295.	2.9	24
36	Magnetoencephalography in the Diagnosis of Concussion. Progress in Neurological Surgery, 2014, 28, 94-111.	1.3	22

#	Article	lF	CITATIONS
37	A pilot treatment study for mild traumatic brain injury: Neuroimaging changes detected by MEG after low-intensity pulse-based transcranial electrical stimulation. Brain Injury, 2017, 31, 1951-1963.	1.2	21
38	Low power method for estimating the magnetization transfer bound-pool macromolecular fraction. Journal of Magnetic Resonance Imaging, 1997, 7, 913-917.	3.4	19
39	Dissociation of Neural Mechanisms for Intersensory Timing Deficits in Parkinson's Disease. Timing and Time Perception, 2014, 2, 145-168.	0.6	19
40	Resting-State Neuronal Oscillatory Correlates of Working Memory Performance. PLoS ONE, 2013, 8, e66820.	2.5	18
41	MEG Working Memory N-Back Task Reveals Functional Deficits in Combat-Related Mild Traumatic Brain Injury. Cerebral Cortex, 2019, 29, 1953-1968.	2.9	18
42	Ultrashort echo time (UTE) magnetic resonance imaging of myelin: technical developments and challenges. Quantitative Imaging in Medicine and Surgery, 2020, 10, 1186-1203.	2.0	16
43	Age and Sex Differences in the Associations of Pulse Pressure With White Matter and Subcortical Microstructure. Hypertension, 2021, 77, 938-947.	2.7	16
44	Abnormal distraction and loadâ€specific connectivity during working memory in cognitively normal Parkinson's disease. Human Brain Mapping, 2020, 41, 1195-1211.	3.6	14
45	Head Computed Tomography in the Emergency Department: AÂCollection of Easily Missed Findings that are Life-Threatening or Life-Changing. Journal of Emergency Medicine, 2014, 47, 646-659.	0.7	12
46	Brain Amygdala Volume Increases in Veterans and Active-Duty Military Personnel With Combat-Related Posttraumatic Stress Disorder and Mild Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 2020, 35, E1-E9.	1.7	11
47	Presurgical Functional Mapping with Magnetoencephalography. Neuroimaging Clinics of North America, 2020, 30, 159-174.	1.0	11
48	Altered Functional Interactions of Inhibition Regions in Cognitively Normal Parkinson's Disease. Frontiers in Aging Neuroscience, 2018, 10, 331.	3.4	10
49	Associations between age and brain microstructure in older community-dwelling men and women: the Rancho Bernardo Study. Neurobiology of Aging, 2020, 95, 94-103.	3.1	10
50	Strongyloides stercoralis Hyperinfection Syndrome Presenting as Severe, Recurrent Gastrointestinal Bleeding, Leading to a Diagnosis of Cushing Disease. American Journal of Tropical Medicine and Hygiene, 2015, 93, 822-827.	1.4	8
51	High-Contrast Lumbar Spinal Bone Imaging Using a 3D Slab-Selective UTE Sequence. Frontiers in Endocrinology, 2021, 12, 800398.	3.5	8
52	Comprehensive assessment of in vivo lumbar spine intervertebral discs using a 3D adiabatic T1i-prepared ultrashort echo time (UTE-Adiab-T1i) pulse sequence. Quantitative Imaging in Medicine and Surgery, 2022, 12, 269-280.	2.0	7
53	Brain microstructure mediates sex-specific patterns of cognitive aging. Aging, 2021, 13, 3218-3238.	3.1	6
54	High contrast cartilaginous endplate imaging using a 3D adiabatic inversionâ€recoveryâ€prepared fatâ€saturated ultrashort echo time (3D IRâ€FSâ€UTE) sequence. NMR in Biomedicine, 2021, 34, e4579.	2.8	6

#	Article	IF	Citations
55	Detection of Chronic Blast-Related Mild Traumatic Brain Injury with Diffusion Tensor Imaging and Support Vector Machines. Diagnostics, 2022, 12, 987.	2.6	6
56	Restingâ€state magnetoencephalography source magnitude imaging with deepâ€learning neural network for classification of symptomatic combatâ€related mild traumatic brain injury. Human Brain Mapping, 2021, 42, 1987-2004.	3 . 6	5
57	Magnetoencephalography for Mild Traumatic Brain Injury and Posttraumatic Stress Disorder. Neuroimaging Clinics of North America, 2020, 30, 175-192.	1.0	4
58	Internetwork Connectivity Predicts Cognitive Decline in Parkinson's and Is Altered by Genetic Variants. Frontiers in Aging Neuroscience, 2022, 14, 853029.	3.4	4
59	Case report 68Ga-DOTATATE of optic nerve sheath meningioma. American Journal of Ophthalmology Case Reports, 2021, 22, 101048.	0.7	3
60	Development of advanced signal processing and source imaging methods for superparamagnetic relaxometry. Physics in Medicine and Biology, 2017, 62, 734-757.	3.0	2
61	Utility of Shunt Series in the Evaluation of Ventriculoperitoneal Shunt Dysfunction in Adults. Journal of Emergency Medicine, 2020, 58, 391-397.	0.7	1
62	Transient Aphasia Following Resection of a Thalamic Cavernous Malformation. World Neurosurgery, 2020, 136, 390-393.e3.	1.3	1
63	Magnetoencephalography Language Mapping Using Auditory Memory Retrieval and Silent Repeating Task. Journal of Clinical Neurophysiology, 2024, 41, 148-154.	1.7	1
64	Magnetoencephalography (MEG) Slow-Wave Imaging for Diagnosing Non-acute Mild Traumatic Brain Injury. Current Radiology Reports, 2015, 3, 1.	1.4	0
65	Magnetoencephalography: Elucidating Brain Function. Neuroimaging Clinics of North America, 2020, 30, xv-xvi.	1.0	0
66	Small-volume subdural injection with extensive cephalad spread. Canadian Journal of Anaesthesia, 2020, 67, 1064-1065.	1.6	0