Clara Chepkirui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11644846/publications.pdf

Version: 2024-02-01

19	950	12	19
papers	citations	h-index	g-index
19	19	19	1279
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins. Nature Communications, 2022, 13, 515.	12.8	8
2	Ribosomally derived lipopeptides containing distinct fatty acyl moieties. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	30
3	Meroterpenoids Possibly Produced by a Bacterial Endosymbiont of the Tropical Basidiomycete Echinochaete brachypora. Biomolecules, 2022, 12, 755.	4.0	2
4	Enzyme-mediated backbone N-methylation in ribosomally encoded peptides. Methods in Enzymology, 2021, 656, 429-458.	1.0	4
5	Heimiomycins A–C and Calamenens from the African Basidiomycete Heimiomyces sp Journal of Natural Products, 2020, 83, 2501-2507.	3.0	6
6	Skeletocutins A-L: Antibacterial Agents from the Kenyan Wood-Inhabiting Basidiomycete, Skeletocutis sp Journal of Agricultural and Food Chemistry, 2019, 67, 8468-8475.	5.2	14
7	The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 2019, 97, 1-136.	12.3	459
8	Sesquiterpenes from an Eastern African Medicinal Mushroom Belonging to the Genus <i>Sanghuangporus </i> Iournal of Natural Products, 2019, 82, 1283-1291.	3.0	30
9	Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnology Advances, 2019, 37, 107344.	11.7	98
10	Skeletocutins M–Q: biologically active compounds from the fruiting bodies of the basidiomycete <i>Skeletocutis</i> sp. collected in Africa. Beilstein Journal of Organic Chemistry, 2019, 15, 2782-2789.	2.2	7
11	Microporenic Acids A–G, Biofilm Inhibitors, and Antimicrobial Agents from the Basidiomycete <i>Microporus</i> Species. Journal of Natural Products, 2018, 81, 778-784.	3.0	46
12	An unprecedented spiro [furan-2,1'-indene]-3-one derivative and other nematicidal and antimicrobial metabolites from Sanghuangporus sp. (Hymenochaetaceae, Basidiomycota) collected in Kenya. Phytochemistry Letters, 2018, 25, 141-146.	1.2	31
13	Cytochalasans Act as Inhibitors of Biofilm Formation of Staphylococcus Aureus. Biomolecules, 2018, 8, 129.	4.0	36
14	Aethiopinolones A–E, New Pregnenolone Type Steroids from the East African Basidiomycete Fomitiporia aethiopica. Molecules, 2018, 23, 369.	3.8	10
15	New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, Pseudobambusicola thailandica. MycoKeys, 2018, 33, 1-23.	1.9	25
16	The genus Diaporthe: a rich source of diverse and bioactive metabolites. Mycological Progress, 2017, 16, 477-494.	1.4	67
17	Two cytotoxic triterpenes from cultures of a Kenyan Laetiporus sp. (Basidiomycota). Phytochemistry Letters, 2017, 20, 106-110.	1.2	23
18	Bioactive Compounds Produced by Hypoxylon fragiforme against Staphylococcus aureus Biofilms. Microorganisms, 2017, 5, 80.	3.6	19

#	Article	IF	CITATIONS
19	Monochlorinated calocerins A-D and 9-oxostrobilurin derivatives from the basidiomycete Favolaschia calocera. Phytochemistry, 2016, 132, 95-101.	2.9	35