Bernhard Schink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11643769/publications.pdf

Version: 2024-02-01

273 papers 17,400 citations

71 h-index

10986

20358 116 g-index

288 all docs

288 docs citations

288 times ranked

11770 citing authors

#	Article	IF	CITATIONS
1	Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 1993, 362, 834-836.	27.8	674
2	Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 5-28.	1.0	615
3	Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 2001, 34, 181-186.	2.7	400
4	<i>Physiology, Ecology, Phylogeny, and Genomics of Microorganisms Capable of Syntrophic Metabolism</i> . Annals of the New York Academy of Sciences, 2008, 1125, 58-72.	3.8	342
5	Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiology Ecology, 2004, 47, 85-92.	2.7	313
6	Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiology Reviews, 2015, 39, 688-728.	8.6	288
7	Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek, 2002, 81, 257-261.	1.7	264
8	Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Applied Microbiology and Biotechnology, 1990, 33, 121.	3.6	244
9	Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environmental Microbiology Reports, 2010, 2, 489-499.	2.4	238
10	Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Archives of Microbiology, 1998, 169, 159-165.	2.2	234
11	Growth Yields in Bacterial Denitrification and Nitrate Ammonification. Applied and Environmental Microbiology, 2007, 73, 1420-1424.	3.1	234
12	Diversity of Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria and their Involvement in Oxygen-Independent Iron Cycling. Geomicrobiology Journal, 2004, 21, 371-378.	2.0	227
13	The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification, and biochemical properties. Biochimica Et Biophysica Acta - Biomembranes, 1979, 567, 315-324.	2.6	223
14	Anaerobic Naphthalene Degradation by a Sulfate-Reducing Enrichment Culture. Applied and Environmental Microbiology, 2000, 66, 2743-2747.	3.1	223
15	Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Archives of Microbiology, 1982, 133, 195-201.	2.2	214
16	Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18273-18278.	7.1	210
17	Humic Acid Reduction by <i>Propionibacterium freudenreichii</i> and Other Fermenting Bacteria. Applied and Environmental Microbiology, 1998, 64, 4507-4512.	3.1	204
18	Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov Archives of Microbiology, 1985, 142, 295-301.	2.2	203

#	Article	IF	CITATIONS
19	Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake. Applied and Environmental Microbiology, 2011, 77, 4429-4436.	3.1	192
20	Growth of <i>Geobacter sulfurreducens</i> with Acetate in Syntrophic Cooperation with Hydrogen-Oxidizing Anaerobic Partners. Applied and Environmental Microbiology, 1998, 64, 2232-2236.	3.1	189
21	Life by a new decarboxylation-dependent energy conservation mechanism with Na ⁺ as coupling ion. EMBO Journal, 1984, 3, 1665-1670.	7.8	184
22	A Periplasmic and Extracellular <i>c</i> -Type Cytochrome of <i>Geobacter sulfurreducens</i> Acts as a Ferric Iron Reductase and as an Electron Carrier to Other Acceptors or to Partner Bacteria. Journal of Bacteriology, 1998, 180, 3686-3691.	2.2	184
23	Anaerobic degradation of naphthalene and 2â€methylnaphthalene by strains of marine sulfateâ€reducing bacteria. Environmental Microbiology, 2009, 11, 209-219.	3.8	177
24	Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiology Letters, 2002, 211, 65-70.	1.8	169
25	Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Archives of Microbiology, 1984, 137, 33-41.	2.2	163
26	Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. Archives of Microbiology, 1991, 155, 183-190.	2.2	159
27	Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Archives of Microbiology, 1985, 140, 387-390.	2.2	154
28	Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. FEMS Microbiology Ecology, 2009, 70, 335-343.	2.7	152
29	Stable Hydrogen and Carbon Isotope Fractionation during Microbial Toluene Degradation: Mechanistic and Environmental Aspects. Applied and Environmental Microbiology, 2001, 67, 4842-4849.	3.1	146
30	Microbial methanol formation: A major end product of pectin metabolism. Current Microbiology, 1980, 4, 387-389.	2.2	142
31	Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Archives of Microbiology, 1984, 140, 147-152.	2.2	142
32	13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. Environmental Microbiology, 1999, 1, 409-414.	3.8	139
33	Syntrophism among Prokaryotes. , 2006, , 309-335.		139
34	Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Archives of Microbiology, 1995, 164, 346-352.	2.2	138
35	Proposal of the suffix –ota to denote phyla. Addendum to â€~Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes'. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 967-969.	1.7	136
36	Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3073-3077.	7.1	135

#	Article	IF	CITATIONS
37	Propionigenium modestum gen. nov. sp. nov. a new strictly anaerobic, nonsporing bacterium growing on succinate. Archives of Microbiology, 1982, 133, 209-216.	2.2	134
38	Bacteria Associated with Benthic Diatoms from Lake Constance: Phylogeny and Influences on Diatom Growth and Secretion of Extracellular Polymeric Substances. Applied and Environmental Microbiology, 2008, 74, 7740-7749.	3.1	128
39	Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Archives of Microbiology, 2000, 174, 314-321.	2.2	126
40	Phosphite oxidation by sulphate reduction. Nature, 2000, 406, 37-37.	27.8	124
41	Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons. Applied and Environmental Microbiology, 2002, 68, 5191-5194.	3.1	123
42	Operation of the CO Dehydrogenase/Acetyl Coenzyme A Pathway in both Acetate Oxidation and Acetate Formation by the Syntrophically Acetate-Oxidizing Bacterium Thermacetogenium phaeum. Journal of Bacteriology, 2005, 187, 3471-3476.	2.2	121
43	Degradation of o -xylene and m -xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Archives of Microbiology, 2004, 181, 407-417.	2.2	119
44	Ferrihydrite-Dependent Growth of Sulfurospirillum deleyianum through Electron Transfer via Sulfur Cycling. Applied and Environmental Microbiology, 2004, 70, 5744-5749.	3.1	114
45	Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Archives of Microbiology, 2002, 177, 381-391.	2.2	113
46	Syntrophism Among Prokaryotes. , 2013, , 471-493.		107
47	The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Systematic and Applied Microbiology, 2011, 34, 542-551.	2.8	106
48	Pyrite formation from FeS and H ₂ S is mediated through microbial redox activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6897-6902.	7.1	106
49	The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp FEMS Microbiology Ecology, 2006, 24, 137-149.	2.7	103
50	Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology (United) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
51	Cysteine-Mediated Reductive Dissolution of Poorly Crystalline Iron(III) Oxides by Geobacter sulfurreducens. Environmental Science & Environmental Scie	10.0	101
52	Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Archives of Microbiology, 2002, 178, 53-58.	2.2	100
53	Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS Microbiology Ecology, 2001, 37, 127-134.	2.7	98
54	A Proteomic View at the Biochemistry of Syntrophic Butyrate Oxidation in Syntrophomonas wolfei. PLoS ONE, 2013, 8, e56905.	2.5	98

#	Article	IF	CITATIONS
55	Microbial degradation of phthalates: biochemistry and environmental implications. Environmental Microbiology Reports, 2020, 12, 3-15.	2.4	98
56	Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiology Letters, 1985, 31, 69-77.	1.8	89
57	Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Archives of Microbiology, 1989, 151, 421-426.	2.2	89
58	Enhanced Propionate Formation by <i>Propionibacterium freudenreichii</i> subsp. <i>freudenreichii</i> in a Three-Electrode Amperometric Culture System. Applied and Environmental Microbiology, 1990, 56, 2771-2776.	3.1	89
59	Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Archives of Microbiology, 1992, 157, 417-424.	2.2	88
60	Evidence of reversed electron transport in syntrophic butyrate or benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. Archives of Microbiology, 1994, 162, 136-142.	2.2	88
61	Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1073-1080.	1.7	87
62	pmoA -Based Analysis of Methanotrophs in a Littoral Lake Sediment Reveals a Diverse and Stable Community in a Dynamic Environment. Applied and Environmental Microbiology, 2004, 70, 3138-3142.	3.1	85
63	Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4284-4287.	1.7	84
64	A new 3-hydroxybutyrate fermenting anaerobe, llyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. Archives of Microbiology, 1984, 140, 139-146.	2,2	83
65	Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Archives of Microbiology, 1984, 137, 250-255.	2.2	82
66	Serious mismatches continue between science and policy in forest bioenergy. GCB Bioenergy, 2019, 11, 1256-1263.	5.6	82
67	Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov Archives of Microbiology, 1990, 154, 355-361.	2.2	81
68	Initiation of Anaerobic Degradation of <i>p</i> -Cresol by Formation of 4-Hydroxybenzylsuccinate in <i>Desulfobacterium cetonicum</i> . Journal of Bacteriology, 2001, 183, 752-757.	2.2	78
69	Nitrite, an Electron Donor for Anoxygenic Photosynthesis. Science, 2007, 316, 1870-1870.	12.6	78
70	Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Archives of Microbiology, 1989, 151, 427-433.	2.2	77
71	Microbiology of Wetwood: Importance of Pectin Degradation and <i>Clostridium</i> Species in Living Trees. Applied and Environmental Microbiology, 1981, 42, 526-532.	3.1	77
72	Pure culture and cytological properties of â€Â~Syntriphobacter wolini'. FEMS Microbiology Letters, 1994, 123, 249-254.	1.8	75

#	Article	IF	CITATIONS
73	Fermentative degradation of resorcinol and resorcylic acids. Archives of Microbiology, 1985, 143, 52-59.	2.2	74
74	Anaerobic degradation of nonionic and anionic surfactants in enrichment cultures and fixed-bed reactors. Water Research, 1987, 21, 615-622.	11.3	73
75	Anaerobic degradation of m -cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Archives of Microbiology, 1999, 172, 287-294.	2.2	73
76	Respiration of 2,4,6-Trinitrotoluene by Pseudomonassp. Strain JLR11. Journal of Bacteriology, 2000, 182, 1352-1355.	2.2	73
77	Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4. Archives of Microbiology, 1993, 159, 308-315.	2.2	72
78	Different strategies in anaerobic biodegradation of aromatic compounds: nitrate reducers versus strict anaerobes. Environmental Microbiology Reports, 2012, 4, 469-478.	2.4	72
79	Mechanistic aspects of molybdenum-containing enzymes. FEMS Microbiology Reviews, 1998, 22, 489-501.	8.6	71
80	Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Archives of Microbiology, 2006, 185, 417-427.	2.2	71
81	Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed culture. Archives of Microbiology, 1989, 151, 541-545.	2.2	69
82	Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Applied Microbiology and Biotechnology, 1989, 32, 170-175.	3.6	68
83	Acetylene hydratase of Pelobacter acetylenicus . Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme. FEBS Journal, 1999, 264, 176-182.	0.2	68
84	Reciprocal Isomerization of Butyrate and Isobutyrate by the Strictly Anaerobic Bacterium Strain WoG13 and Methanogenic Isobutyrate Degradation by a Defined Triculture. Applied and Environmental Microbiology, 1992, 58, 1435-1439.	3.1	68
85	Hydrogen or formate: Alternative key players in methanogenic degradation. Environmental Microbiology Reports, 2017, 9, 189-202.	2.4	67
86	Energetics of syntrophic fatty acid oxidation. FEMS Microbiology Reviews, 1994, 15, 85-94.	8.6	66
87	Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures. Archives of Microbiology, 1986, 145, 396-402.	2.2	65
88	Stable Isotope Fractionation Caused by Glycyl Radical Enzymes during Bacterial Degradation of Aromatic Compounds. Applied and Environmental Microbiology, 2004, 70, 2935-2940.	3.1	64
89	Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics, 2012, 13, 723.	2.8	64
90	Anaerobic degradation of isovalerate by a defined methanogenic coculture. Archives of Microbiology, 1986, 144, 291-295.	2.2	63

#	Article	IF	Citations
91	Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiology Ecology, 2006, 56, 331-344.	2.7	61
92	Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria. Biochimie, 1978, 60, 297-305.	2.6	59
93	Fermentation of tartrate enantiomers by anaerobic bacteria, and description of two new species of strict anaerobes, Ruminococcus pasteurii and llyobacter tartaricus. Archives of Microbiology, 1984, 139, 409-414.	2.2	59
94	Fermentation of primary alcohols and diols and pure culture of syntrophically alcohol-oxidizing anaerobes. Archives of Microbiology, 1985, 143, 60-66.	2.2	59
95	Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. FEBS Journal, 1998, 256, 589-594.	0.2	57
96	Factors influencing the cultivability of lake water bacteria. Journal of Microbiological Methods, 2001, 47, 41-50.	1.6	57
97	Preferential cultivation of type II methanotrophic bacteria from littoral sediments (Lake Constance). FEMS Microbiology Ecology, 2004, 47, 179-189.	2.7	57
98	Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17. Microbiology (United Kingdom), 2010, 156, 2428-2437.	1.8	57
99	Enzymes Involved in Anaerobic Polyethylene Glycol Degradation by Pelobacter venetianus and Bacteroides Strain PG1. Applied and Environmental Microbiology, 1992, 58, 2164-2167.	3.1	57
100	Involvement of NADH:Acceptor Oxidoreductase and Butyryl Coenzyme A Dehydrogenase in Reversed Electron Transport during Syntrophic Butyrate Oxidation by <i>Syntrophomonas wolfei</i> Journal of Bacteriology, 2009, 191, 6167-6177.	2.2	56
101	Evidence of Two Oxidative Reaction Steps Initiating Anaerobic Degradation of Resorcinol (1,3-Dihydroxybenzene) by the Denitrifying Bacterium <i>Azoarcus anaerobius</i> Bacteriology, 1998, 180, 3644-3649.	2.2	55
102	A strictly anaerobic nitrate-reducing bacterium growing with resorcinol and other aromatic compounds. Archives of Microbiology, 1992, 158, 48-53.	2.2	54
103	Diversity, Ecology, and Isolation of Acetogenic Bacteria. , 1994, , 197-235.		52
104	Energetics and biochemistry of fermentative benzoate degradation by Syntrophus gentianae. Archives of Microbiology, 1999, 171, 331-337.	2.2	52
105	Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiology Letters, 2003, 220, 229-233.	1.8	52
106	Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11571-11576.	7.1	52
107	Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Archives of Microbiology, 1989, 151, 126-132.	2.2	51
108	Anaerovibrio glycerini sp. nov., an anaerobic bacterium fermenting glycerol to propionate, cell matter, and hydrogen. Archives of Microbiology, 1989, 152, 473-478.	2.2	51

#	Article	IF	CITATIONS
109	Pure Culture of Syntrophus buswellii, Definition of its Phylogenetic Status, and Description of Syntrophus gentianae sp. nov Systematic and Applied Microbiology, 1995, 18, 62-66.	2.8	51
110	Mutants of Alcaligenes eutrophus defective in autotrophic metabolism. Archives of Microbiology, 1978, 117, 123-129.	2.2	50
111	Methanogenic degradation of hydroquinone and catechol via reductive dehydroxylation to phenol. FEMS Microbiology Letters, 1985, 31, 79-87.	1.8	50
112	Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poised-potential amperometric culture system. Archives of Microbiology, 1990, 153, 506-512.	2.2	48
113	Enrichment and Isolation of Ferricâ€ŀron―and Humicâ€Acidâ€Reducing Bacteria. Methods in Enzymology, 2005, 397, 58-77.	1.0	48
114	Two new species of anaerobic oxalate-fermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples. Archives of Microbiology, 1989, 153, 79-84.	2.2	47
115	Exploring the Active Site of the Tungsten, Iron-Sulfur Enzyme Acetylene Hydratase. Journal of Bacteriology, 2011, 193, 1229-1236.	2.2	47
116	Activity and Diversity of Methanotrophic Bacteria at Methane Seeps in Eastern Lake Constance Sediments. Applied and Environmental Microbiology, 2011, 77, 2573-2581.	3.1	47
117	Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. Environmental Microbiology, 2008, 10, 1501-1511.	3.8	45
118	Radioassay for Hydrogenase Activity in Viable Cells and Documentation of Aerobic Hydrogen-Consuming Bacteria Living in Extreme Environments. Applied and Environmental Microbiology, 1983, 45, 1491-1500.	3.1	44
119	Pathway of anaerobic poly-?-hydroxybutyrate degradation byllyobacter delafieldii. Biodegradation, 1993, 4, 179-185.	3.0	43
120	Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. FEBS Journal, 1993, 217, 233-240.	0.2	43
121	Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium <i>Syntrophorhabdus aromaticivorans</i> . ISME Journal, 2019, 13, 1252-1268.	9.8	43
122	Degradation of hydroxyhydroquinone by the strictly anaerobic fermenting bacterium Pelobacter massiliensis sp. nov Archives of Microbiology, 1991, 155, 511-516.	2.2	42
123	Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp Biodegradation, 1991, 2, 71-79.	3.0	42
124	Enzymes involved in the anaerobic degradation of <i>ortho</i> â€phthalate by the nitrateâ€reducing bacterium <i>Azoarcus</i> sp. strain PA01. Environmental Microbiology, 2016, 18, 3175-3188.	3.8	42
125	O -Demethylation by the Homoacetogenic Anaerobe Holophaga Foetida Studied by a New Photometric Methylation Assay Using Electrochemically Produced Cob(I)Alamin. FEBS Journal, 1994, 226, 945-951.	0.2	41
126	Hydroquinone degradation via reductive dehydroxylation of gentisyl-CoA by a strictly anaerobic fermenting bacterium. Archives of Microbiology, 1994, 161, 25-32.	2,2	41

#	Article	IF	CITATIONS
127	Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology (United Kingdom), 1997, 143, 2345-2351.	1.8	41
128	Comparison of Aerobic Methanotrophic Communities in Littoral and Profundal Sediments of Lake Constance by a Molecular Approach. Applied and Environmental Microbiology, 2007, 73, 4389-4394.	3.1	41
129	Fermentation of polyethylene glycol via acetaldehyde in Pelobacter venetianus. Applied Microbiology and Biotechnology, 1986, 25, 37-42.	3. 6	40
130	Malonate decarboxylase of Malonomonas rubra, a novel type of biotin-containing acetyl enzyme. FEBS Journal, 1992, 207, 117-123.	0.2	40
131	Syntrophic Associations in Methanogenic Degradation. , 2006, 41, 1-19.		40
132	Inhibition of methanogenesis by ethylene and other unsaturated hydrocarbons. FEMS Microbiology Letters, 1985, 31, 63-68.	1.8	39
133	Lithotrophic growth and hydrogen metabolism byClostridium magnum. FEMS Microbiology Letters, 1991, 83, 347-350.	1.8	39
134	Characterization of pectinolytic enzymes of Clostridium thermosulfurogenes. FEMS Microbiology Letters, 1983, 17, 295-298.	1.8	38
135	Dynamics of Redox Changes of Iron Caused by Light–dark Variations in Littoral Sediment of a Freshwater Lake. Biogeochemistry, 2005, 74, 323-339.	3.5	38
136	Clostridium homopropionicum sp. nov., a new strict anaerobe growing with 2-, 3-, or 4-hydroxybutyrate. Archives of Microbiology, 1990, 154, 342-348.	2.2	37
137	Metabolic pathways and energetics of the acetone-oxidizing, sulfate-reducing bacterium, Desulfobacterium cetonicum. Archives of Microbiology, 1995, 163, 188-194.	2.2	37
138	Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism. Biological Chemistry, 2005, 386, 999-1006.	2.5	36
139	Desulfoprunum benzoelyticum gen. nov., sp. nov., a Gram-stain-negative, benzoate-degrading, sulfate-reducing bacterium isolated from a wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 77-84.	1.7	36
140	Microbial degradation of natural and of new synthetic polymers. FEMS Microbiology Letters, 1992, 103, 311-316.	1.8	35
141	Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes. FEMS Microbiology Letters, 2006, 148, 175-180.	1.8	35
142	Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans. BMC Genomics, 2013, 14, 753.	2.8	35
143	Glycerol and mixture of carbon sources conversion to hydrogen by Clostridium beijerinckii DSM791 and effects of various heavy metals on hydrogenase activity. International Journal of Hydrogen Energy, 2017, 42, 7875-7882.	7.1	35
144	Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3289-3296.	1.7	33

#	Article	IF	Citations
145	The Phylogenetic Status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Systematic and Applied Microbiology, 1989, 11, 257-260.	2.8	32
146	Fermentative degradation of acetone by an enrichment culture in membrane-separated culture devices and in cell suspensions. FEMS Microbiology Letters, 1994, 122, 27-32.	1.8	32
147	Elstera litoralis gen. nov., sp. nov., isolated from stone biofilms of Lake Constance, Germany. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1750-1754.	1.7	32
148	Genomics of a phototrophic nitrite oxidizer: insights into the evolution of photosynthesis and nitrification. ISME Journal, 2016, 10, 2669-2678.	9.8	32
149	Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1. Archives of Microbiology, 2000, 173, 91-96.	2.2	31
150	Degradation of Acetaldehyde and Its Precursors by Pelobacter carbinolicus and P. acetylenicus. PLoS ONE, 2014, 9, e115902.	2.5	31
151	Enzymes involved in anaerobic degradation of acetone by a denitrifying bacterium. Biodegradation, 1990, 1, 243-251.	3.0	30
152	Fermentative degradation of glycolic acid by defined syntrophic cocultures. Archives of Microbiology, 1991, 156, 398-404.	2.2	30
153	Complete anaerobic oxidation of hydroquinone by Desulfococcus sp. strain Hy5: indications of hydroquinone carboxylation to gentisate. Archives of Microbiology, 1994, 162, 131-135.	2.2	30
154	Sequential Transhydroxylations Converting Hydroxyhydroquinone to Phloroglucinol in the Strictly Anaerobic, Fermentative Bacterium Pelobacter massiliensis. Applied and Environmental Microbiology, 1992, 58, 1861-1868.	3.1	30
155	Anaerobic degradation of 3-aminobenzoate by a newly isolated sulfate reducer and a methanogenic enrichment culture. Archives of Microbiology, 1992, 158, 328-334.	2.2	28
156	Syntrophy in Methanogenic Degradation. Microbiology Monographs, 2010, , 143-173.	0.6	28
157	Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria. Archives of Microbiology, 2004, 182, 175-81.	2.2	27
158	Identification and Heterologous Expression of Genes Involved in Anaerobic Dissimilatory Phosphite Oxidation by <i>Desulfotignum phosphitoxidans</i>). Journal of Bacteriology, 2010, 192, 5237-5244.	2.2	27
159	Physiological limits to life in anoxic subseafloor sediment. FEMS Microbiology Reviews, 2020, 44, 219-231.	8.6	27
160	Fermentative degradation of glutarate via decarboxylation by newly isolated strictly anaerobic bacteria. Archives of Microbiology, 1992, 157, 290-296.	2.2	26
161	Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida. Microbiology (United Kingdom), 1997, 143, 1105-1114.	1.8	26
162	Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes. Applied and Environmental Microbiology, 2011, 77, 6821-6825.	3.1	26

#	Article	IF	Citations
163	Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01T. Standards in Genomic Sciences, 2015, 10, 90.	1.5	26
164	Desulfolutivibrio sulfoxidireducens gen. nov., sp. nov., isolated from a pyrite-forming enrichment culture and reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov. Systematic and Applied Microbiology, 2020, 43, 126105.	2.8	26
165	Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp Archives of Microbiology, 1990, 153, 200-204.	2.2	25
166	Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate. Archives of Microbiology, 1995, 164, 271-279.	2.2	25
167	Anaerobic degradation of protocatechuate (3,4-dihydroxybenzoate) byThauera aromaticastrain AR-1. FEMS Microbiology Letters, 2002, 212, 139-143.	1.8	25
168	Redox Changes of Iron Caused by Erosion, Resuspension and Sedimentation in Littoral Sediment of a Freshwater Lake. Biogeochemistry, 2005, 74, 341-356.	3.5	25
169	Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Archives of Microbiology, 1991, 156, 302-306.	2.2	24
170	One Molecule of Molybdopterin Guanine Dinucleotide is Associated with Each Subunit of the Heterodimeric Mo-Fe-S Protein Transhydroxylase of Pelobacter acidigallici as Determined by SDS/PAGE and Mass Spectrometry. FEBS Journal, 1996, 237, 406-413.	0.2	24
171	Heterologous Expression and Identification of the Genes Involved in Anaerobic Degradation of 1,3-Dihydroxybenzene (Resorcinol) in Azoarcus anaerobius. Journal of Bacteriology, 2007, 189, 3824-3833.	2.2	24
172	Microaerobic and Anaerobic Bacterial Activities Involved in Formation of Wetwood and Discoloured Wood. IAWA Journal, 1984, 5, 105-109.	2.7	23
173	Transhydroxylase of Pelobacter acidigallici: a molybdoenzyme catalyzing the conversion of pyrogallol to phloroglucinol. BBA - Proteins and Proteomics, 1994, 1204, 217-224.	2.1	23
174	Fermentative degradation of triethanolamine by a homoacetogenic bacterium. Archives of Microbiology, 1994, 162, 103-107.	2.2	23
175	Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium. Archives of Microbiology, 1995, 163, 268-275.	2.2	23
176	Sodium-dependent succinate decarboxylation by a new anaerobic bacterium belonging to the genus Peptostreptococcus. Antonie Van Leeuwenhoek, 1996, 70, 11-20.	1.7	23
177	Initial steps in the fermentation of 3-hydroxybenzoate by Sporotomaculum hydroxybenzoicum. Archives of Microbiology, 2000, 173, 288-295.	2.2	23
178	Alternative Pathways of Acetogenic Ethanol and Methanol Degradation in the Thermophilic Anaerobe Thermacetogenium phaeum. Frontiers in Microbiology, 2019, 10, 423.	3.5	23
179	Batch and continuous production of propionic acid from whey permeate by Propionibacterium acidi-propionici in a three-electrode amperometric culture system. Applied Microbiology and Biotechnology, 1992, 37, 549.	3.6	22
180	Dynamics in composition and size-class distribution of humic substances in profundal sediments of Lake Constance. Organic Geochemistry, 2001, 32, 3-10.	1.8	22

#	Article	IF	Citations
181	Biogas process parametersâ€"energetics and kinetics of secondary fermentations in methanogenic biomass degradation. Applied Microbiology and Biotechnology, 2016, 100, 1019-1026.	3.6	22
182	Enzymes involved in phthalate degradation in sulphateâ€reducing bacteria. Environmental Microbiology, 2019, 21, 3601-3612.	3.8	22
183	Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 2001, 34, 181-186.	2.7	22
184	Anaerobic degradation of 1,3-propanediol by sulfate-reducing and by fermenting bacteria. Antonie Van Leeuwenhoek, 1990, 57, 205-213.	1.7	21
185	Acetate oxidation through a modified citric acid cycle in Propionibacterium freudenreichii. Archives of Microbiology, 1995, 163, 182-187.	2.2	21
186	Identification of the Gene Cluster for the Anaerobic Degradation of 3,5-Dihydroxybenzoate (\hat{l} ±-Resorcylate) in Thauera aromatica Strain AR-1. Applied and Environmental Microbiology, 2015, 81, 7201-7214.	3.1	21
187	Competitive inhibition of the membrane-bound hydrogenase of Alcaligenes eutrophus by molecular oxygen. Biochemical and Biophysical Research Communications, 1980, 95, 1563-1569.	2.1	20
188	Isolation of a hydrogenase-cytochromebcomplex from cytoplasmic membranes of Xanthobacter autotrophicus GZ 29. FEMS Microbiology Letters, 1982, 13, 289-293.	1.8	20
189	Methanogenic Degradation of Anthranilate (2-Aminobenzoate). Systematic and Applied Microbiology, 1988, 11, 9-12.	2.8	20
190	Anaerobic Degradation of $\hat{l}\pm$ -resorcylate by a Nitrate-reducing Bacterium, Thauera aromatica Strain AR-1. Systematic and Applied Microbiology, 1997, 20, 540-544.	2.8	20
191	Towards the reaction mechanism of pyrogallol–phloroglucinol transhydroxylase of Pelobacter acidigallici. BBA - Proteins and Proteomics, 1999, 1430, 245-253.	2.1	20
192	Fermentative degradation of putrescine by new strictly anaerobic bacteria. Archives of Microbiology, 1989, 151, 498-505.	2.2	19
193	New motile anaerobic bacteria growing by succinate decarboxylation to propionate. Archives of Microbiology, 1990, 154, 550.	2.2	19
194	Anaerobic degradation of 3-hydroxybenzoate by a newly isolated nitrate-reducing bacterium. FEMS Microbiology Letters, 1991, 84, 267-272.	1.8	19
195	The Phylogenetic Positions of Pelobacter acetylenicus and Pelobacter propionicus. Systematic and Applied Microbiology, 1993, 16, 216-218.	2.8	19
196	Hydroxyhydroquinone reductase, the initial enzyme involved in the degradation of hydroxyhydroquinone (1,2,4-trihydroxybenzene) by Desulfovibrio inopinatus. Archives of Microbiology, 2000, 173, 206-212.	2.2	19
197	Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance. FEMS Microbiology Ecology, 2016, 92, fiw123.	2.7	19
198	Degradation of Glucose, Glycerol and Acetate by Aerobic Bacteria in Surface Water of Great Salt Lake, Utah, USA. Systematic and Applied Microbiology, 1988, 11, 94-96.	2.8	18

#	Article	IF	Citations
199	Energy conservation in malolactic fermentation by Lactobacillus plantarum and Lactobacillus sake. Archives of Microbiology, 1992, 157, 457-463.	2.2	18
200	Fermentation of phenoxyethanol to phenol and acetate by a homoacetogenic bacterium. Archives of Microbiology, 1994, 162, 199-204.	2.2	18
201	A complete citric acid cycle in assimilatory metabolism of Pelobacter acidigallici, a strictly anaerobic, fermenting bacterium. Archives of Microbiology, 1990, 154, 394-399.	2.2	17
202	Fermentative degradation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) by a defined coculture of strictly anaerobic bacteria. Biodegradation, 1990, 1, 1-7.	3.0	17
203	The Fermenting Bacterium Malonomonas rubra is Phylogenetically Related to Sulfur-Reducing Bacteria and Contains a c-Type Cytochrome similar to those of Sulfur and Sulfate Reducers. Systematic and Applied Microbiology, 1998, 21, 340-345.	2.8	17
204	Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment. Systematic and Applied Microbiology, 2015, 38, 379-389.	2.8	17
205	Net synthesis of acetate from CO2byEubacterium acidaminophilumthrough the glycine reductase pathway. FEMS Microbiology Letters, 1999, 177, 1-6.	1.8	16
206	Carbonylation as a Key Reaction in Anaerobic Acetone Activation by Desulfococcus biacutus. Applied and Environmental Microbiology, 2013, 79, 6228-6235.	3.1	16
207	14CO2 Exchange with Acetoacetate Catalyzed by Dialyzed Cell-Free Extracts of the Bacterial Strain Bunn Grown with Acetone and Nitrate. FEBS Journal, 1995, 228, 677-682.	0.2	15
208	Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiology Letters, 2006, 154, 331-336.	1.8	15
209	Thiamine Pyrophosphate Stimulates Acetone Activation by <i>Desulfococcus biacutus</i> As Monitored by a Fluorogenic ATP Analogue. ACS Chemical Biology, 2014, 9, 1263-1266.	3.4	15
210	Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins. BMC Genomics, 2014, 15, 584.	2.8	15
211	Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 152-164.	1.0	15
212	The Genus Pelobacter. , 1992, , 3393-3399.		14
213	The Genus Propionigenium. , 1992, , 3948-3951.		14
214	The Family Syntrophomonadaceae. , 2014, , 371-379.		14
215	Phosphitispora fastidiosa gen. nov. sp. nov., a new dissimilatory phosphite-oxidizing anaerobic bacterium isolated from anaerobic sewage sludge. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	14
216	Mechanism of Anaerobic Ether Cleavage. Journal of Biological Chemistry, 2002, 277, 11684-11690.	3.4	13

#	Article	IF	Citations
217	Crystallization and preliminary X-ray analysis of the tungsten-dependent acetylene hydratase fromPelobacter acetylenicus. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 299-301.	0.7	13
218	Uptake and release of phosphate by littoral sediment of a freshwater lake under the influence of light or mechanical perturbation. Journal of Limnology, 2010, 69, 54.	1.1	13
219	Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment. Applied and Environmental Microbiology, 2018, 84, .	3.1	13
220	The Genus Pelobacter., 2006, , 5-11.		13
221	Mikrobielle Lebensgemeinschaften in Gew�ssersedimenten. Die Naturwissenschaften, 1989, 76, 364-372.	1.6	12
222	Syntrophic Degradation of Cadaverine by a Defined Methanogenic Coculture. Applied and Environmental Microbiology, 2009, 75, 4821-4828.	3.1	12
223	Hydroquinone degradation via reductive dehydroxylation of gentisyl-CoA by a strictly anaerobic fermenting bacterium. Archives of Microbiology, 1994, 161, 25-32.	2.2	12
224	Energy-Conserving Enzyme Systems Active During Syntrophic Acetate Oxidation in the Thermophilic Bacterium Thermacetogenium phaeum. Frontiers in Microbiology, 2019, 10, 2785.	3.5	11
225	Notes on the use of Greek word roots in genus and species names of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2129-2140.	1.7	11
226	Fermentative degradation of glyoxylate by a new strictly anaerobic bacterium. Archives of Microbiology, 1991, 156, 392-397.	2.2	10
227	Anaerobic degradation of sorbic acid by sulfate-reducing and fermenting bacteria: pentanone-2 and isopentanone-2 as byproducts. Biodegradation, 1991, 2, 33-41.	3.0	10
228	Anaerobic degradation of malonatevia malonyl-CoA bySporomusa malonica, Klebsiella oxytoca, andRhodobacter capsulatus. Antonie Van Leeuwenhoek, 1994, 66, 343-350.	1.7	10
229	Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium. Biochemical and Biophysical Research Communications, 2006, 349, 480-484.	2.1	10
230	"Unknown Genome―Proteomics. Molecular and Cellular Proteomics, 2009, 8, 122-131.	3.8	10
231	Quantification of archaea-driven freshwater nitrification from single cell to ecosystem levels. ISME Journal, 2022, 16, 1647-1656.	9.8	10
232	Cultivation of syntrophic anaerobic bacteria in membrane-separated culture devices. FEMS Microbiology Letters, 1987, 45, 71-76.	1.8	9
233	Propionate acts as carboxylic group acceptor in aspartate fermentation by Propionibacterium freudenreichii. Archives of Microbiology, 1990, 155, 46-51.	2.2	9
234	Pelorhabdus rhamnosifermentans gen. nov., sp. nov., a strictly anaerobic rhamnose degrader from freshwater lake sediment. Systematic and Applied Microbiology, 2021, 44, 126225.	2.8	8

#	Article	IF	Citations
235	Stereochemistry of the Conversion of 2-Phenoxyethanol into Phenol and Acetaldehyde byAcetobacterium sp Helvetica Chimica Acta, 2003, 86, 2629-2636.	1.6	7
236	Mass spectrometric protein identification from two-dimensional gel separation with stain-free detection and visualization using native fluorescence. International Journal of Mass Spectrometry, 2011, 301, 22-28.	1.5	7
237	Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus. BMC Microbiology, 2016, 16, 280.	3.3	7
238	Energy conservation in fermentative glutarate degradation by the bacterial strain WoGl3. FEMS Microbiology Letters, 1992, 100, 221-225.	1.8	7
239	An alternative to the glyoxylate shunt. Molecular Microbiology, 2009, 73, 975-977.	2.5	6
240	High-quality-draft genome sequence of the fermenting bacterium Anaerobium acetethylicum type strain GluBS11T (DSM 29698). Standards in Genomic Sciences, 2017, 12, 24.	1.5	6
241	Two enzymes of the acetone degradation pathway of <i>Desulfococcus biacutus ⟨ i⟩: coenzyme B_{12 ⟨ sub>â€dependent 2â€hydroxyisobutyrylâ€CoA mutase and 3â€hydroxybutyrylâ€CoA dehydrogenase. Environmental Microbiology Reports, 2018, 10, 283-292.}</i>	2.4	6
242	Synthesis of short-chain hydroxyaldehydes and their 2,4-dinitrophenylhydrazone derivatives, and separation of their isomers by high-performance liquid chromatography. Journal of Chromatography A, 2018, 1531, 143-150.	3.7	6
243	Attachment to amorphous iron sulfide increases the activity of strictly anaerobic, gallic acid-degrading bacteria. FEMS Microbiology Letters, 1991, 78, 115-120.	1.8	5
244	Energetic aspects of malate and lactate fermentation by Acetobacterium malicum. FEMS Microbiology Letters, 1991, 90, 83-87.	1.8	5
245	A modified diffusion-based methane sensor and its application in freshwater sediment. Limnology and Oceanography: Methods, 2006, 4, 275-283.	2.0	5
246	Syntrophy in Methanogenic Degradation. Microbiology Monographs, 2018, , 153-192.	0.6	5
247	The Genus Propionigenium., 2006,, 955-959.		5
248	Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS Microbiology Ecology, 2001, 37, 127-134.	2.7	5
249	Proposal to change the name Rhodoligotrophos Fukuda et al. 2012, 1947 to Rhodoligotrophus. Request for an Opinion. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3545-3545.	1.7	5
250	Methanogenic degradation of hydroquinone in an anaerobic fixed-bed reactor. Applied Microbiology and Biotechnology, 1989, 32, 346.	3.6	4
251	Decarboxylation of 2,3-Dihydroxybenzoate to Catechol Supports Growth of Fermenting Bacteria. Current Microbiology, 1997, 35, 270-273.	2.2	4
252	Methanogens: Syntrophic Metabolism. , 2018, , 1-31.		4

#	Article	IF	Citations
253	Resorcinol Hydroxylase of Azoarcus anaerobius: Molybdenum Dependence, Activity, and Heterologous Expression. Current Microbiology, 2020, 77, 3385-3396.	2.2	4
254	Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate. Archives of Microbiology, 1995, 164, 271-279.	2.2	4
255	Characterization of pectinolytic enzymes of Clostridium thermosulfurogenes. FEMS Microbiology Letters, 1983, 17, 295-298.	1.8	4
256	Naming classes of prokaryotes based on the rules of Latin grammar. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1526-1527.	1.7	4
257	Energetic Aspects of Methanogenic Feeding Webs. , 0, , 171-178.		4
258	Crystallization and preliminary X-ray analysis of the molybdenum-dependent pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 343-345.	2.5	3
259	Microbial populations in wetwood of European white fir (Abies alba Mill.). FEMS Microbiology Letters, 1986, 38, 141-150.	1.8	2
260	Draft genome of Elstera litoralis, a freshwater epilithic biofilm associated bacterium from littoral zone of Lake Constance. Marine Genomics, 2015, 24, 223-224.	1.1	2
261	Desulfatiglans anilini Initiates Degradation of Aniline With the Production of Phenylphosphoamidate and 4-Aminobenzoate as Intermediates Through Synthases and Carboxylases From Different Gene Clusters. Frontiers in Microbiology, 2020, 11, 2064.	3.5	2
262	Activation of short-chain ketones and isopropanol in sulfate-reducing bacteria. BMC Microbiology, 2021, 21, 50.	3.3	2
263	Two Marine Desulfotomaculum spp. of Different Origin are Capable of Utilizing Acetone and Higher Ketones. Current Microbiology, 2021, 78, 1763-1770.	2.2	2
264	Mechanistic aspects of molybdenum-containing enzymes. FEMS Microbiology Reviews, 1998, 22, 489-501.	8.6	2
265	The use of Greek and Latin prepositions and prefixes in compound names: proposed emendation of Appendix 9 of the International Code of Nomenclature of Prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1831-1832.	1.7	2
266	Use of Greek in the prokaryotic nomenclature: proposal to change Principle 3, Recommendation 6, Rule 7, Rule 65 and Appendix 9 of the International Code of Nomenclature of Prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3559-3560.	1.7	2
267	Principles of Anaerobic Degradation of Organic Compounds. , 2005, , 229-257.		1
268	Editorial to the thematic issue climate change and microbiology. FEMS Microbiology Letters, 2018, 365,	1.8	1
269	Methanogens: Syntrophic Metabolism. , 2019, , 179-209.		1
270	Synergistic interactions in the microbial world., 2002, 81, 257.		1

#	Article	lF	CITATIONS
271	Further guidelines for the formation of compound specific and subspecific epithets. A proposal to emend Appendix 9 of the International Code of Nomenclature of Prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3561-3562.	1.7	1
272	Introduction to Microbial Hydrocarbon Production: Bioenergetics., 2018,, 1-17.		0
273	Introduction to Microbial Hydrocarbon Production: Bioenergetics. , 2019, , 1-17.		O