
Maurice W Sabelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11643506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antipredator responses to alarm pheromone in groups of young and/or old thrips larvae. Ethology, 2019, 125, 73-81.	1.1	2
2	Spatial patterns generated by simultaneous cooperation and exploitation favour the evolution of altruism. Journal of Theoretical Biology, 2018, 441, 58-67.	1.7	7
3	Parasitoids follow herbivorous insects to a novel host plant, generalist predators less so. Entomologia Experimentalis Et Applicata, 2017, 162, 261-271.	1.4	6
4	Predatory interactions between prey affect patch selection by predators. Behavioral Ecology and Sociobiology, 2017, 71, 66.	1.4	9
5	Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator. Biological Control, 2017, 105, 19-26.	3.0	40
6	The role of web sharing, species recognition and host-plant defence in interspecific competition between two herbivorous mite species. Experimental and Applied Acarology, 2016, 70, 261-274.	1.6	5
7	Size of predatory mites and refuge entrance determine success of biological control of the coconut mite. BioControl, 2016, 61, 681-689.	2.0	12
8	Why do males choose heterospecific females in the red spider mite?. Experimental and Applied Acarology, 2016, 68, 21-31.	1.6	11
9	No adaptation of a herbivore to a novel host but loss of adaptation to its native host. Scientific Reports, 2015, 5, 16211.	3.3	8
10	Active prey mixing as an explanation for polyphagy in predatory arthropods: synergistic dietary effects on egg production despite a behavioural cost. Functional Ecology, 2015, 29, 1317-1324.	3.6	28
11	Cry-wolf signals emerging from coevolutionary feedbacks in a tritrophic system. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152169.	2.6	1
12	Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytologist, 2015, 205, 828-840.	7.3	169
13	Alternative food and biological control by generalist predatory mites: the case of Amblyseius swirskii. Experimental and Applied Acarology, 2015, 65, 413-418.	1.6	46
14	Distribution and oviposition site selection by predatory mites in the presence of intraguild predators. Experimental and Applied Acarology, 2015, 67, 477-491.	1.6	7
15	Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites. PLoS ONE, 2015, 10, e0127251.	2.5	74
16	Plant Resources as a Factor Altering Emergent Multi-Predator Effects. PLoS ONE, 2015, 10, e0138764.	2.5	8
17	Alternative models of familiarity and false claims concerning social recognition systems. Behavioral Ecology and Sociobiology, 2014, 68, 1563-1563.	1.4	3
18	Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. BMC Biology, 2014, 12, 98.	3.8	82

#	Article	IF	CITATIONS
19	Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet. Experimental and Applied Acarology, 2014, 62, 19-32.	1.6	25
20	Editorial 2014. Experimental and Applied Acarology, 2014, 62, 423-424.	1.6	0
21	Effects of kinship or familiarity? Small thrips larvae experience lower predation risk only in groups of mixed-size siblings. Behavioral Ecology and Sociobiology, 2014, 68, 1029-1035.	1.4	4
22	Females as intraguild predators of males in cross-pairing experiments with phytoseiid mites. Experimental and Applied Acarology, 2013, 61, 173-182.	1.6	3
23	Biological control of aphids in the presence of thrips and their enemies. BioControl, 2013, 58, 45-55.	2.0	44
24	Editorial 2013. Experimental and Applied Acarology, 2013, 59, 389-390.	1.6	0
25	Joining or opting out of a Lotka–Volterra game between predators and prey: does the best strategy depend on modelling energy lost and gained?. Interface Focus, 2013, 3, 20130034.	3.0	4
26	Male–male aggression peaks at intermediate relatedness in a social spider mite. Ecology and Evolution, 2013, 3, 2661-2669.	1.9	22
27	The predatory mite Typhlodromalus aripo prefers green-mite induced plant odours from pubescent cassava varieties. Experimental and Applied Acarology, 2012, 58, 359-370.	1.6	17
28	Laboratory tests for controlling poultry red mites (Dermanyssus gallinae) with predatory mites in small †laying hen' cages. Experimental and Applied Acarology, 2012, 58, 371-383.	1.6	36
29	Predator-prey role reversals, juvenile experience and adult antipredator behaviour. Scientific Reports, 2012, 2, 728.	3.3	56
30	Prey temporarily escape from predation in the presence of a second prey species. Ecological Entomology, 2012, 37, 529-535.	2.2	26
31	The Impact of Induced Plant Volatiles on Plant-Arthropod Interactions. , 2012, , 15-73.		5
32	Trophic structure of arthropods in Starling nests matter to blood parasites and thereby to nestling development. Journal of Ornithology, 2012, 153, 913-919.	1.1	9
33	Intraguild predation among plant pests: western flower thrips larvae feed on whitefly crawlers. BioControl, 2012, 57, 533-539.	2.0	16
34	A Herbivorous Mite Down-Regulates Plant Defence and Produces Web to Exclude Competitors. PLoS ONE, 2011, 6, e23757.	2.5	61
35	A herbivore that manipulates plant defence. Ecology Letters, 2011, 14, 229-236.	6.4	257
36	Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biological Control, 2011, 57, 246-252.	3.0	32

#	Article	IF	CITATIONS
37	Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology, 2011, 36, 435-441.	2.2	32
38	The interplay between genetic and learned components of behavioral traits. Journal of Plant Interactions, 2011, 6, 77-80.	2.1	2
39	Pollen subsidies promote whitefly control through the numerical response of predatory mites. BioControl, 2010, 55, 253-260.	2.0	108
40	Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. BioControl, 2010, 55, 387-398.	2.0	82
41	Order of invasion affects the spatial distribution of a reciprocal intraguild predator. Oecologia, 2010, 163, 79-89.	2.0	22
42	Cues of intraguild predators affect the distribution of intraguild prey. Oecologia, 2010, 163, 335-340.	2.0	25
43	Response of Predatory Mites to a Herbivore-Induced Plant Volatile: Genetic Variation for Context-Dependent Behaviour. Journal of Chemical Ecology, 2010, 36, 680-688.	1.8	10
44	Vector and virus induce plant responses that benefit a non-vector herbivore. Basic and Applied Ecology, 2010, 11, 162-169.	2.7	44
45	Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or "Cry Wolf―Signals?. PLoS ONE, 2010, 5, e12161.	2.5	125
46	Biological control of an acarine pest by single and multiple natural enemies. Biological Control, 2009, 50, 60-65.	3.0	53
47	Within-Plant Migration of the Predatory Mite Typhlodromalus aripo from the Apex to the Leaves of Cassava: Response to Day–Night Cycle, Prey Location and Prey Density. Journal of Insect Behavior, 2009, 22, 186-195.	0.7	20
48	Predatory Mite Attraction to Herbivore-induced Plant Odors is not a Consequence of Attraction to Individual Herbivore-induced Plant Volatiles. Journal of Chemical Ecology, 2008, 34, 791-803.	1.8	79
49	"Sleeping with the enemyâ€â€"predator-induced diapause in a mite. Die Naturwissenschaften, 2008, 95, 1195-1198.	1.6	41
50	Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation. Oecologia, 2008, 156, 797-806.	2.0	58
51	Maize plants sprayed with either jasmonic acid or its precursor, methyl linolenate, attract armyworm parasitoids, but the composition of attractants differs. Entomologia Experimentalis Et Applicata, 2008, 129, 189-199.	1.4	44
52	Patterns of exclusion in an intraguild predator–prey system depend on initial conditions. Journal of Animal Ecology, 2008, 77, 624-630.	2.8	37
53	Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host plant defences. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 443-452.	2.6	148
54	Domatia reduce larval cannibalism in predatory mites. Ecological Entomology, 2008, 33, 374-379.	2.2	41

#	Article	IF	CITATIONS
55	Ecology meets plant physiology: herbivore-induced plant responses and their indirect effects on arthropod communities. , 2007, , 188-218.		40
56	HABITAT STRUCTURE AFFECTS INTRAGUILD PREDATION. Ecology, 2007, 88, 2713-2719.	3.2	285
57	Population dynamics of thrips prey and their mite predators in a refuge. Oecologia, 2007, 150, 557-568.	2.0	32
58	Evolution of talking plants in a tritrophic context: Conditions for uninfested plants to attract predators prior to herbivore attack. Journal of Theoretical Biology, 2006, 243, 361-374.	1.7	8
59	Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecological Research, 2006, 21, 3-8.	1.5	67
60	Does Methyl Salicylate, A Component of Herbivore-induced Plant Odour, Promote Sporulation of the Mite-pathogenic Fungus Neozygites tanajoae?. Experimental and Applied Acarology, 2006, 39, 63-74.	1.6	17
61	Morphology of the olfactory system in the predatory mite Phytoseiulus Persimilis. Experimental and Applied Acarology, 2006, 40, 217-229.	1.6	37
62	To be an intra-guild predator or a cannibal: is prey quality decisive?. Ecological Entomology, 2006, 31, 430-436.	2.2	31
63	Searching behaviour of an omnivorous predator for novel and native host plants of its herbivores: a study on arthropod colonization of eucalyptus in Brazil. Entomologia Experimentalis Et Applicata, 2005, 116, 135-142.	1.4	28
64	EVOLUTION OF SPECIALIZATION AND ECOLOGICAL CHARACTER DISPLACEMENT OF HERBIVORES ALONG A GRADIENT OF PLANT QUALITY. Evolution; International Journal of Organic Evolution, 2005, 59, 507-520.	2.3	47
65	Is arthropod predation exclusively satiation-driven?. Oikos, 2005, 109, 101-116.	2.7	24
66	How predatory mites find plants with whitefly prey. Experimental and Applied Acarology, 2005, 36, 263-275.	1.6	17
67	Seasonal cycles and persistence in an acarine predator-prey system on cassava in Africa. Population Ecology, 2005, 47, 107-117.	1.2	30
68	Herbivore-induced Plant Volatiles Trigger Sporulation in Entomopathogenic Fungi: The Case of Neozygites tanajoae Infecting the Cassava Green Mite. Journal of Chemical Ecology, 2005, 31, 1003-1021.	1.8	41
69	Impact of plant-provided food on herbivore–carnivore dynamics. , 2005, , 223-266.		19
70	Fitness consequences of food-for-protection strategies in plants. , 2005, , 109-134.		10
71	Diet of intraguild predators affects antipredator behavior in intraguild prey. Behavioral Ecology, 2005, 16, 364-370.	2.2	60
72	Global Persistence Despite Local Extinction in Acarine Predatorâ€Prey Systems: Lessons From Experimental and Mathematical Exercises. Advances in Ecological Research, 2005, , 183-220.	2.7	17

#	Article	IF	CITATIONS
73	Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1929-1933.	2.6	56
74	Diet–dependent effects of gut bacteria on their insect host: the symbiosis ofErwiniasp. and western flower thrips. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2171-2178.	2.6	94
75	Jasmonic Acid Is a Key Regulator of Spider Mite-Induced Volatile Terpenoid and Methyl Salicylate Emission in Tomato. Plant Physiology, 2004, 135, 2025-2037.	4.8	337
76	Interactions Between Two Neotropical Phytoseiid Predators on Cassava Plants and Consequences for Biological Control of a Shared Spider Mite Prey: a Screenhouse Evaluation. Biocontrol Science and Technology, 2004, 14, 63-76.	1.3	19
77	Herbivore arthropods benefit from vectoring plant viruses. Ecology Letters, 2004, 8, 70-79.	6.4	226
78	Vulnerability of Bemisia tabaci immatures to phytoseiid predators: Consequences for oviposition and influence of alternative food. Entomologia Experimentalis Et Applicata, 2004, 110, 95-102.	1.4	30
79	State-dependent and odour-mediated anemotactic responses of the predatory mite Phytoseiulus persimilis in a wind tunnel. Experimental and Applied Acarology, 2004, 32, 263-270.	1.6	3
80	Predation risk affects diapause induction in the spider mite Tetranychus urticae. Experimental and Applied Acarology, 2004, 34, 307-314.	1.6	3
81	Differential Timing of Spider Mite-Induced Direct and Indirect Defenses in Tomato Plants. Plant Physiology, 2004, 135, 483-495.	4.8	347
82	Intraspecific variation in induction of feeding preference and performance in a herbivorous mite. Experimental and Applied Acarology, 2003, 29, 13-25.	1.6	9
83	Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Experimental and Applied Acarology, 2003, 31, 15-26.	1.6	118
84	Adaptive learning in arthropods: spider mites learn to distinguish food quality. Experimental and Applied Acarology, 2003, 30, 233-247.	1.6	29
85	State-dependent and odor-mediated anemotactic responses of a micro-arthropod on a novel type of locomotion compensator. Behavior Research Methods, 2003, 35, 478-482.	1.3	9
86	HOW VIRULENT SHOULD A PARASITE BE TO ITS VECTOR?. Ecology, 2003, 84, 2568-2574.	3.2	43
87	Sex ratio control in arrhenotokous and pseudo-arrhenotokous mites. , 2002, , 235-253.		21
88	HOW PLANTS BENEFIT FROM PROVIDING FOOD TO PREDATORS EVEN WHEN IT IS ALSO EDIBLE TO HERBIVORES. Ecology, 2002, 83, 2664-2679.	3.2	206
89	Induction of Preference and Performance after Acclimation to Novel Hosts in a Phytophagous Spider Mite: Adaptive Plasticity?. American Naturalist, 2002, 159, 553-565.	2.1	94
90	Evolutionary Dynamics of Prey Exploitation in a Metapopulation of Predators. American Naturalist, 2002, 159, 172-189.	2.1	27

#	Article	IF	CITATIONS
91	Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecological Entomology, 2002, 27, 660-664.	2.2	73
92	The benefits of clustering eggs: the role of egg predation and larval cannibalism in a predatory mite. Oecologia, 2002, 131, 20-26.	2.0	45
93	Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Oecologia, 2002, 132, 143-149.	2.0	56
94	Evolution of herbivore-induced plant volatiles. Oikos, 2002, 97, 134-138.	2.7	34
95	An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecology Letters, 2002, 5, 377-385.	6.4	102
96	Interspecific infanticide deters predators. Ecology Letters, 2002, 5, 490-494.	6.4	74
97	Adaptive learning of host preference in a herbivorous arthropod. Ecology Letters, 2001, 4, 190-195.	6.4	71
98	Plants protect their roots by alerting the enemies of grubs. Ecology Letters, 2001, 4, 292-294.	6.4	204
99	Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Experimental and Applied Acarology, 2001, 25, 785-808.	1.6	40
100	Predatory mites avoid ovipositing near counterattacking prey. Experimental and Applied Acarology, 2001, 25, 613-623.	1.6	40
101	Resistance to 2-tridecanone in Tetranychus urticae: effects of induced resistance, cross-resistance and heritability. Experimental and Applied Acarology, 2001, 25, 717-730.	1.6	6
102	Habitat structure and population persistence in an experimental community. Nature, 2001, 412, 538-543.	27.8	187
103	Meta-analysis of laboratory experiments on plant–plant information transfer. Biochemical Systematics and Ecology, 2001, 29, 1089-1102.	1.3	15
104	INFERRING COLONIZATION PROCESSES FROM POPULATION DYNAMICS IN SPATIALLY STRUCTURED PREDATOR–PREY SYSTEMS. Ecology, 2000, 81, 3350-3361.	3.2	7
105	Do herbivore-induced plant volatiles influence predator migration and local dynamics of herbivorous and predatory mites?. , 2000, 24, 427-440.		6
106	How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey. Experimental and Applied Acarology, 2000, 24, 881-895.	1.6	83
107	Kin recognition by the predatory mite Iphiseius degenerans : discrimination among own, conspecific, and heterospecific eggs. Ecological Entomology, 2000, 25, 147-155.	2.2	55
108	Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of of prey. Physiological Entomology, 2000, 25, 260-265.	1.5	112

#	Article	IF	CITATIONS
109	Cross-correlation analysis of fluctuations in local populations of pear psyllids and anthocorid bugs. Ecological Entomology, 1999, 24, 354-363.	2.2	36
110	Absence of odour-mediated avoidance of heterospecific competitors by the predatory mite Phytoseiulus persimilis. Entomologia Experimentalis Et Applicata, 1999, 92, 73-82.	1.4	25
111	Attraction of a generalist predator towards herbivore-infested plants. Entomologia Experimentalis Et Applicata, 1999, 93, 303-312.	1.4	43
112	Diet-dependent female choice for males with â€~good genes' in a soil predatory mite. Nature, 1999, 401, 581-584.	27.8	70
113	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2177-2191.	1.8	13
114	Title is missing!. Experimental and Applied Acarology, 1998, 22, 455-466.	1.6	18
115	Review Behaviour and indirect interactions in food webs of plant-inhabiting arthropods. Experimental and Applied Acarology, 1998, 22, 497-521.	1.6	130
116	Improved control capacity of the mite predator Phytoseiulus persimilis (Acari: Phytoseiidae) on tomato. Experimental and Applied Acarology, 1997, 21, 507-518.	1.6	53
117	Volatiles from Psylla-Infested Pear Trees and Their Possible Involvement in Attraction of Anthocorid Predators. Journal of Chemical Ecology, 1997, 23, 2241-2260.	1.8	123
118	Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch. Experimental and Applied Acarology, 1997, 21, 473-484.	1.6	77
119	Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia, 1997, 110, 179-185.	2.0	158
120	When should a female avoid adding eggs to the clutch of another female? A simultaneous oviposition and sex allocation game. Evolutionary Ecology, 1996, 10, 475-497.	1.2	18
121	The Milker-Killer Dilemma in Spatially Structured Predator-Prey Interactions. Oikos, 1995, 74, 391.	2.7	80
122	The Dynamics of Multiple Infection and the Evolution of Virulence. American Naturalist, 1995, 146, 881-910.	2.1	432
123	Do plants tap SOS signals from their infested neighbours?. Trends in Ecology and Evolution, 1995, 10, 167-170.	8.7	106
124	Specificity of odour-mediated avoidance of competition in Drosophila parasitoids. Behavioral Ecology and Sociobiology, 1995, 36, 229-235.	1.4	18
125	Why do Varroa mites invade worker brood cells of the honey bee despite lower reproductive success?. Behavioral Ecology and Sociobiology, 1995, 36, 283-289.	1.4	1
126	Search strategies of fruit flies in steady and shifting winds in the absence of food odours. Physiological Entomology, 1994, 19, 335-341.	1.5	20

#	Article	IF	CITATIONS
127	A demonstration of asynchronous local cycles in an acarine predator-prey system. Experimental and Applied Acarology, 1992, 14, 185-199.	1.6	26
128	Plant strategies of manipulating predatorprey interactions through allelochemicals: Prospects for application in pest control. Journal of Chemical Ecology, 1990, 16, 3091-3118.	1.8	608
129	Do phytoseiid mites select the best prey species in terms of reproductive success?. Experimental and Applied Acarology, 1990, 8, 161-173.	1.6	53
130	Does prey preference change as a result of prey species being presented together? Analysis of prey selection by the predatory mite Typhlodromus pyri (Acarina: Phytoseiidae). Oecologia, 1989, 81, 302-309.	2.0	30
131	Analysis of prey preference in phytoseiid mites by using an olfactometer, predation models and electrophoresis. Experimental and Applied Acarology, 1988, 5, 225-241.	1.6	77
132	How Plants Obtain Predatory Mites as Bodyguards. Animal Biology, 1987, 38, 148-165.	0.4	442