Xibing He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1164101/publications.pdf Version: 2024-02-01

XIRING HE

#	Article	IF	CITATIONS
1	Extension of the CHARMM general force field to sulfonylâ€containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 2012, 33, 2451-2468.	3.3	659
2	A fast and high-quality charge model for the next generation general AMBER force field. Journal of Chemical Physics, 2020, 153, 114502.	3.0	195
3	Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Al² _{16–22} Dimer. Journal of Chemical Theory and Computation, 2019, 15, 1440-1452.	5.3	102
4	Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids. Journal of Chemical Theory and Computation, 2017, 13, 4535-4552.	5.3	90
5	Fast, Accurate, and Reliable Protocols for Routine Calculations of Protein–Ligand Binding Affinities in Drug Design Projects Using AMBER GPU-TI with ff14SB/GAFF. ACS Omega, 2020, 5, 4611-4619.	3.5	74
6	Polarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator. Journal of Physical Chemistry B, 2015, 119, 637-652.	2.6	67
7	Atomistic Simulation Study of Linear Alkylbenzene Sulfonates at the Water/Air Interface. Journal of Physical Chemistry B, 2010, 114, 9787-9794.	2.6	53
8	Polarizable Empirical Force Field for Acyclic Polyalcohols Based on the Classical Drude Oscillator. Biopolymers, 2013, 99, 724-738.	2.4	50
9	Exploring the utility of coarse-grained water models for computational studies of interfacial systems. Molecular Physics, 2010, 108, 2007-2020.	1.7	48
10	Prediction of the Binding Affinities and Selectivity for CB1 and CB2 Ligands Using Homology Modeling, Molecular Docking, Molecular Dynamics Simulations, and MM-PBSA Binding Free Energy Calculations. ACS Chemical Neuroscience, 2020, 11, 1139-1158.	3.5	38
11	Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation. Acta Pharmacologica Sinica, 2019, 40, 374-386.	6.1	34
12	Paramaterization of a coarse-grained model for linear alkylbenzene sulfonate surfactants and molecular dynamics studies of their self-assembly in aqueous solution. Chemical Physics Letters, 2010, 487, 71-76.	2.6	27
13	Calculate protein–ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3. Journal of Computer-Aided Molecular Design, 2019, 33, 105-117.	2.9	27
14	Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of PHF6 Peptide of Tau Protein. Journal of Chemical Theory and Computation, 2021, 17, 6458-6471.	5.3	23
15	<i>In silico</i> binding profile characterization of SARS-CoV-2 spike protein and its mutants bound to human ACE2 receptor. Briefings in Bioinformatics, 2021, 22, .	6.5	22
16	Entropy and Polarity Control the Partition and Transportation of Drug-like Molecules in Biological Membrane. Scientific Reports, 2017, 7, 17749.	3.3	21
17	Prediction of Drug–Drug Interactions Between Opioids and Overdosed Benzodiazepines Using Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation. Drugs in R and D, 2019, 19, 297-305.	2.2	17
18	Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction. Briefings in Bioinformatics, 2021, 22, .	6.5	17

XIBING HE

#	Article	IF	CITATIONS
19	Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates. Journal of Computer-Aided Molecular Design, 2017, 31, 349-363.	2.9	16
20	Determination of van der Waals Parameters Using a Double Exponential Potential for Nonbonded Divalent Metal Cations in TIP3P Solvent. Journal of Chemical Theory and Computation, 2021, 17, 1086-1097.	5.3	16
21	Recent progress in general force fields of small molecules. Current Opinion in Structural Biology, 2022, 72, 187-193.	5.7	15
22	An insight into paracetamol and its metabolites using molecular docking and molecular dynamics simulation. Journal of Molecular Modeling, 2018, 24, 243.	1.8	14
23	A Comparative Kirkwood-Buff Study of Aqueous Methanol Solutions Modeled by the CHARMM Additive and Drude Polarizable Force Fields. Journal of Physical Chemistry B, 2013, 117, 10572-10580.	2.6	13
24	Molecular Mechanism and Kinetics of Amyloid-β ₄₂ Aggregate Formation: A Simulation Study. ACS Chemical Neuroscience, 2019, 10, 4643-4658.	3.5	13
25	Insight of Captagon Abuse by Chemogenomics Knowledgebase-guided Systems Pharmacology Target Mapping Analyses. Scientific Reports, 2019, 9, 2268.	3.3	10
26	New application of <i>in silico</i> methods in identifying mechanisms of action and key components of anti-cancer herbal formulation YIV-906 (PHY906). Physical Chemistry Chemical Physics, 2019, 21, 23501-23513.	2.8	9
27	How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations?. Journal of Chemical Information and Modeling, 2020, 60, 6624-6633.	5.4	9
28	Introducing Virtual Oligomerization Inhibition to Identify Potent Inhibitors of AÎ ² Oligomerization. Journal of Chemical Theory and Computation, 2020, 16, 3920-3935.	5.3	7
29	Significantly different effects of tetrahydroberberrubine enantiomers on dopamine D1/D2 receptors revealed by experimental study and integrated in silico simulation. Journal of Computer-Aided Molecular Design, 2019, 33, 447-459.	2.9	6
30	A multiple-step <i>in silico</i> screening protocol to identify allosteric inhibitors of Spike–hACE2 binding. Physical Chemistry Chemical Physics, 2022, 24, 4305-4316.	2.8	6
31	Bifurcated Hydrogen Bonding and Asymmetric Fluctuations in a Carbohydrate Crystal Studied via X-ray Crystallography and Computational Analysis. Journal of Physical Chemistry B, 2013, 117, 7546-7553.	2.6	5
32	Development and Evaluation of Geometry Optimization Algorithms in Conjunction with ANI Potentials. Journal of Chemical Theory and Computation, 2022, 18, 978-991.	5.3	2
33	Joint Computational/Cell-Based Approach for Screening Inhibitors of Tau Oligomerization: A Proof-of-Concept Study. Journal of Alzheimer's Disease, 2022, 89, 107-119.	2.6	2
34	Development of a Coarse-Grained Model for the Surfactant Family of Linear Alkylbenzene Sulfonates. Biophysical Journal, 2011, 100, 147a.	0.5	1
35	Incorporating structural similarity into a scoring function to enhance the prediction of binding affinities. Journal of Cheminformatics, 2021, 13, 11.	6.1	1
36	Development of a Polarizable Force Field for Macromolecules Based on the Classical Drude Oscillator. Biophysical Journal, 2014, 106, 43a.	0.5	0