
William T Starmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11640197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Possible Roles of New Mutations Shared by Asian and American Zika Viruses. Molecular Biology and Evolution, 2017, 34, msw270.	8.9	19
2	How sexual selection can drive the evolution of costly sperm ornamentation. Nature, 2016, 533, 535-538.	27.8	150
3	Spatial Scale, Genetic Structure, and Speciation of Hawaiian Endemic Yeasts 1. Pacific Science, 2016, 70, 389.	0.6	8
4	Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions. Science Advances, 2015, 1, e1500162.	10.3	12
5	Epistatic Adaptive Evolution of Human Color Vision. PLoS Genetics, 2014, 10, e1004884.	3.5	39
6	Postcopulatory Sexual Selection Generates Speciation Phenotypes in Drosophila. Current Biology, 2013, 23, 1853-1862.	3.9	99
7	An Analytical Framework for Estimating Fertilization Bias and the Fertilization Set from Multiple Sperm-Storage Organs. American Naturalist, 2013, 182, 552-561.	2.1	49
8	Genetic structure of <i>Kurtzmaniella cleridarum</i> , a cactus flower beetle yeast of the Sonoran and Mojave Deserts: speciation by distance?. FEMS Yeast Research, 2013, 13, 674-681.	2.3	7
9	Phenotypic plasticity in fungi: a review with observations on <i>Aureobasidium pullulans</i> . Mycologia, 2009, 101, 823-832.	1.9	128
10	Molecular Basis of Spectral Tuning in the Red- and Green-Sensitive (M/LWS) Pigments in Vertebrates. Genetics, 2008, 179, 2037-2043.	2.9	97
11	Kurtzmaniella gen. nov. and description of the heterothallic, haplontic yeast species Kurtzmaniella cleridarum sp. nov., the teleomorph of Candida cleridarum. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 520-524.	1.7	14
12	Complex interactions with females and rival males limit the evolution of sperm offence and defence. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1779-1788.	2.6	70
13	The Biogeographic Diversity of Cactophilic Yeasts. , 2006, , 485-499.		10
14	MECHANISMS UNDERLYING THE SPERM QUALITY ADVANTAGE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2006, 60, 2064-2080.	2.3	88
15	A new subclade of haplontic Metschnikowia species associated with insects of morning glory flowers in Africa and description of Metschnikowia aberdeeniae sp. nov International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1141-1145.	1.7	11
16	Mechanisms underlying the sperm quality advantage in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 2006, 60, 2064-80.	2.3	32
17	ENVIRONMENTAL ORIGINS OF SEXUALLY SELECTED VERIATION AND A CRITIQUE OF THE FLUCTUATING ASYMMETRY-SEXUAL SELECTION HYPOTHESIS. Evolution; International Journal of Organic Evolution, 2005, 59, 577-585.	2.3	27
18	Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia mauinuiana sp. nov., three endemic yeasts from Hawaiian nitidulid beetles. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1369-1377.	1.7	59

#	Article	IF	CITATIONS
19	SEXUAL SELECTION FOR SIZE AND SYMMETRY IN A DIVERSIFYING SECONDARY SEXUAL CHARACTER IN DROSOPHILA BIPECTINATA DUDA (DIPTERA: DROSOPHILIDAE). Evolution; International Journal of Organic Evolution, 2004, 58, 597-607.	2.3	51
20	Recycling of pathogenic microbes through survival in ice. Medical Hypotheses, 2004, 63, 773-773.	1.5	0
21	The Relationship of Phylogeny to Community Structure: The Cactus Yeast Community. American Naturalist, 2004, 164, 709-721.	2.1	49
22	Recycling of pathogenic microbes through survival in ice. Medical Hypotheses, 2004, 63, 773-777.	1.5	57
23	Geography and niche occupancy as determinants of yeast biodiversity: the yeast?insect?morning glory ecosystem of Kpuka Puaulu, Hawai?i. FEMS Yeast Research, 2003, 4, 105-111.	2.3	39
24	Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Research, 2003, 3, 97-103.	2.3	12
25	The origin of the cactus-yeast community. FEMS Yeast Research, 2003, 3, 441-448.	2.3	40
26	, , and , three new yeast species associated with insects of tropical morning glory. FEMS Yeast Research, 2003, 3, 97-103.	2.3	31
27	Metschnikowia vanudenii sp. nov. and Metschnikowia lachancei sp. nov., from flowers and associated insects in North America. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1665-1670.	1.7	22
28	Phylogenetic, Geographical, and Temporal Analysis of Female Reproductive Trade-Offs in Drosophilidae. , 2003, , 139-171.		6
29	The costs and benefits of killer toxin production by the yeast Pichia kluyveri. Antonie Van Leeuwenhoek, 2003, 83, 89-97.	1.7	15
30	The statistics of detecting positional fluctuating asymmetry. Biological Journal of the Linnean Society, 2002, 77, 491-498.	1.6	9
31	Metschnikowia lochheadii and Metschnikowia drosophilae, two new yeast species isolated from insects associated with flowers. Canadian Journal of Microbiology, 2001, 47, 103-109.	1.7	52
32	Function of the mating plug in Drosophila hibisci Bock. Behavioral Ecology and Sociobiology, 2001, 49, 196-205.	1.4	47
33	Quantitative genetics of seminal receptacle length in Drosophila melanogaster. Heredity, 2001, 87, 25-32.	2.6	16
34	Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Research, 2001, 1, 1-8.	2.3	223
35	THE QUANTITATIVE GENETICS OF FLUCTUATING ASYMMETRY. Evolution; International Journal of Organic Evolution, 2001, 55, 498.	2.3	48
36	THE QUANTITATIVE GENETICS OF FLUCTUATING ASYMMETRY. Evolution; International Journal of Organic Evolution, 2001, 55, 498-511.	2.3	1

#	Article	IF	CITATIONS
37	<i>Metschnikowia lochheadii</i> and <i>Metschnikowia drosophilae</i> , two new yeast species isolated from insects associated with flowers. Canadian Journal of Microbiology, 2001, 47, 103-109.	1.7	17
38	Reproductive characteristics of the flower-breeding Drosophila hibisci Bock (Drosophilidae) in eastern Australia: within-population genetic determinants of ovariole number. Heredity, 2000, 84, 90-96.	2.6	10
39	Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia, 2000, 92, 286-295.	1.9	67
40	The yeast community and mycocin producers of guava fruit in Rio de Janeiro, Brazil. Mycologia, 2000, 92, 16-22.	1.9	11
41	Ribosomal DNA, species structure, and biogeography of the cactophilic yeast <i>Clavispora opuntiae</i> . Canadian Journal of Microbiology, 2000, 46, 195-210.	1.7	24
42	The Yeast Community and Mycocin Producers of Guava Fruit in Rio de Janeiro, Brazil. Mycologia, 2000, 92, 16.	1.9	12
43	On the biogeography of yeasts in the <i>Wickerhamiella</i> clade and description of <i>Wickerhamiella lipophila</i> sp. nov., the teleomorph of <i>Candida lipophila</i> . Canadian Journal of Microbiology, 2000, 46, 1145-1148.	1.7	15
44	Detection and Characterization of Ancient Fungi Entrapped in Glacial Ice. Mycologia, 2000, 92, 286.	1.9	54
45	Pichia lachancei sp. nov., associated with several Hawaiian plant species. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1295-1299.	1.7	5
46	Kodamaea nitidulidarum, Candida restingae and Kodamaea anthophila, three new related yeast species from ephemeral flowers. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 309-318.	1.7	41
47	Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biology, 1999, 22, 207-212.	1.2	76
48	Revival and characterization of fungi from ancient polar ice. The Mycologist, 1999, 13, 70-73.	0.4	48
49	<i>Kodamaea kakaduensis</i> and <i>Candida tolerans</i> , two new ascomycetous yeast species from Australian <i>Hibiscus</i> flowers. Canadian Journal of Microbiology, 1999, 45, 172-177.	1.7	228
50	A mating plug and male mate choice inDrosophila hibisciBock. Animal Behaviour, 1998, 56, 919-926.	1.9	66
51	Candida ipomoeae, a new yeast species related to large-spored Metschnikowia species. Canadian Journal of Microbiology, 1998, 44, 718-722.	1.7	20
52	<i>Metschnikowia continentalis</i> var. <i>borealis</i> , <i>Metschnikowia continentalis</i> var. <i>continentalis</i> , and <i>Metschnikowia hibisci</i> , new heterothallic haploid yeasts from ephemeral flowers and associated insects. Canadian Journal of Microbiology, 1998, 44, 279-288.	1.7	56
53	REPRODUCTIVE CHARACTERISTICS OF THE FLOWER BREEDING <i>DROSOPHILA HIBISCI</i> BOCK (DROSOPHILIDAE) IN EASTERN AUSTRALIA: GENETIC AND ENVIRONMENTAL DETERMINANTS OF OVARIOLE NUMBER. Evolution; International Journal of Organic Evolution, 1998, 52, 806-815.	2.3	32
54	Reproductive characteristics of the flower breeding Drosophila hibisci Bock (Drosophilidae) along a latitudinal gradient in eastern Australia: relation to flower and habitat features. Biological Journal of the Linnean Society, 1997, 62, 459-473.	1.6	3

WILLIAM T STARMER

#	Article	IF	CITATIONS
55	Speciation and evolutionary dynamics of asymmetric mating preference. Researches on Population Ecology, 1997, 39, 191-200.	0.9	13
56	Yeast communities associated withDrosophila species and related flies in an eastern oak-pine forest: A comparison with western communities. Journal of Industrial Microbiology, 1995, 14, 484-494.	0.9	51
57	Genotype-specific habitat selection for oviposition sites in the cactophilic species Drosophila buzzatii. Heredity, 1994, 72, 384-395.	2.6	27
58	Killer Factor as a Mechanism of Interference Competition in Yeasts Associated with Cacti. Ecology, 1992, 73, 54-67.	3.2	42
59	The Yeast Community of Cacti. Brock/Springer Series in Contemporary Bioscience, 1991, , 158-178.	0.3	12
60	The Nutritional Importance of Pure and Mixed Cultures of Yeasts in the Development of Drosophila mulleri Larvae in Opuntia Tissues and its Relationship to Host Plant Shifts. , 1990, , 145-160.		29
61	Adult Life Span of Cactophilic Drosophila: Interactions among Volatiles and Yeasts. American Midland Naturalist, 1989, 121, 331.	0.4	6
62	Causes of variation in wing loading among Drosophila species. Biological Journal of the Linnean Society, 1989, 37, 247-261.	1.6	56
63	Identification of yeasts found in decaying cactus tissue. Canadian Journal of Microbiology, 1988, 34, 1025-1036.	1.7	58
64	The transmission of yeasts by Drosophila buzzatii during courtship and mating. Animal Behaviour, 1988, 36, 1691-1695.	1.9	41
65	Yeasts Vectored by Insects Feeding on Decaying Saguaro Cactus. Southwestern Naturalist, 1988, 33, 362.	0.1	18
66	A comparison of yeast communities found in necrotic tissue of cladodes and fruits ofOpuntia stricta on Islands in the Caribbean Sea and where introduced into Australia. Microbial Ecology, 1987, 14, 179-192.	2.8	19
67	The ecological role of killer yeasts in natural communities of yeasts. Canadian Journal of Microbiology, 1987, 33, 783-796.	1.7	173
68	Quantum and Continuous Evolution of DNA Base Composition in the Yeast Genus Pichia. Evolution; International Journal of Organic Evolution, 1986, 40, 1263.	2.3	5
69	Adaptations of Drosophila and Yeasts: their Interactions with the Volatile 2-propanol in the Cactus-Micro organism-Drosophila Model System. Australian Journal of Biological Sciences, 1986, 39, 69.	0.5	57
70	QUANTUM AND CONTINUOUS EVOLUTION OF DNA BASE COMPOSITION IN THE YEAST GENUS <i>PICHIA</i> . Evolution; International Journal of Organic Evolution, 1986, 40, 1263-1274.	2.3	15
71	Yeast communities from host plants and associated Drosophila in southern arizona: new isolations and analysis of the relative importance of hosts and vectors on comunity composition. Oecologia, 1986, 70, 386-392.	2.0	56
72	Ecological genetics of the Adh-1 locus of Drosophila buzzatii. Biological Journal of the Linnean Society, 1986, 28, 373-385.	1.6	37

#	Article	IF	CITATIONS
73	Coadaptation ofDrosophila and yeasts in their natural habitat. Journal of Chemical Ecology, 1986, 12, 1037-1055.	1.8	102
74	MOLECULAR GENETIC CHARACTERIZATION OF A LOCUS THAT CONTAINS DUPLICATE A <i>dh</i> GENES IN< <i>DROSOPHILA MOJAVENSIS</i> AND RELATED SPECIES. Genetics, 1986, 112, 295-310.	2.9	30
75	Analysis of the community structure of yeasts associated with the decaying stems of cactus. III.Stenocereus thurberi. Microbial Ecology, 1985, 11, 165-173.	2.8	34
76	Origin and Expression of an Alcohol Dehydrogenase Gene Duplication in the Genus Drosophila. Evolution; International Journal of Organic Evolution, 1984, 38, 644.	2.3	9
77	ORIGIN AND EXPRESSION OF AN ALCOHOL DEHYDROGENASE GENE DUPLICATION IN THE GENUSDROSOPHILA. Evolution; International Journal of Organic Evolution, 1984, 38, 644-657.	2.3	34
78	Host-plant shifts and adult survival in the cactus breeding Drosophila mojavensis. Ecological Entomology, 1984, 9, 375-381.	2.2	15
79	Analysis of the community structure of yeasts associated with the decaying stems of cactus. II.Opuntia species. Microbial Ecology, 1983, 9, 247-259.	2.8	49
80	Biochemical characterization of the products of the Adh loci of Drosophila mojavensis. Biochemical Genetics, 1983, 21, 871-883.	1.7	27
81	Differential regulation of duplicate alcohol dehydrogenase genes in Drosophila mojavensis. Developmental Biology, 1983, 96, 346-354.	2.0	59
82	Evolutionary significance of physiological relationships among yeast communities associated with trees. Canadian Journal of Botany, 1982, 60, 285-293.	1.1	30
83	Yeasts from exudates ofQuercus, Ulmus, Populus, andPseudotsuga: New isolations and elucidation of some factors affecting ecological specificity. Microbial Ecology, 1982, 8, 191-198.	2.8	37
84	Analysis of the community structure of yeasts associated with the decaying stems of cactus. I.Stenocereus gummosus. Microbial Ecology, 1982, 8, 71-81.	2.8	57
85	Comparisons of yeast florae from natural substrates and larval guts of southwestern Drosophila. Oecologia, 1982, 52, 187-191.	2.0	36
86	A COMPARISON OF <i>DROSOPHILA</i> HABITATS ACCORDING TO THE PHYSIOLOGICAL ATTRIBUTES OF THE ASSOCIATED YEAST COMMUNITIES. Evolution; International Journal of Organic Evolution, 1981, 35, 38-52.	2.3	75
87	THE EVOLUTIONARY ECOLOGY OF YEASTS FOUND IN THE DECAYING STEMS OF CACTI. , 1981, , 493-498.		2
88	Reproductive Allocation in the Hawaiian Drosophilidae: Egg Size and Number. American Naturalist, 1981, 118, 865-871.	2.1	50
89	EVOLUTION AND SPECIATION OF HOST PLANT SPECIFIC YEASTS. Evolution; International Journal of Organic Evolution, 1980, 34, 137-146.	2.3	41
90	Relevance of the ecology ofCitrus yeasts to the diet ofDrosophila. Microbial Ecology, 1979, 5, 43-49.	2.8	31

#	Article	IF	CITATIONS
91	The ecology of yeast flora associated with cactiphilic Drosophila and their host plants in the Sonoran desert. Microbial Ecology, 1976, 3, 11-30.	2.8	50
92	An Analysis of the Yeast Flora Associated with Cactiphilic Drosophila and their Host Plants in the Sonoran Desert and Its Relation to Temperate and Tropical Associations. Ecology, 1976, 57, 151-160.	3.2	66