
## Libor Matejka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11640080/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Structure and<br>Morphology. Macromolecules, 2004, 37, 9449-9456.               | 4.8 | 198       |
| 2  | Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Thermomechanical<br>Properties. Macromolecules, 2004, 37, 9457-9464.            | 4.8 | 188       |
| 3  | Formation and structure of the epoxy-silica hybrids. Polymer, 1999, 40, 171-181.                                                                             | 3.8 | 142       |
| 4  | Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane<br>(POSS) blocks. Polymer, 2007, 48, 3041-3058.                   | 3.8 | 94        |
| 5  | Cage-like structure formation during sol–gel polymerization of glycidyloxypropyltrimethoxysilane.<br>Journal of Non-Crystalline Solids, 2000, 270, 34-47.    | 3.1 | 89        |
| 6  | Cyclization and Self-Organization in Polymerization of Trialkoxysilanes. Macromolecules, 2001, 34, 6904-6914.                                                | 4.8 | 88        |
| 7  | Structure evolution in epoxy–silica hybrids: sol–gel process. Journal of Non-Crystalline Solids, 1998,<br>226, 114-121.                                      | 3.1 | 84        |
| 8  | Rheology of epoxy networks near the gel point. Polymer Bulletin, 1991, 26, 109-116.                                                                          | 3.3 | 71        |
| 9  | Effect of POSS on thermomechanical properties of epoxy–POSS nanocomposites. European Polymer<br>Journal, 2012, 48, 260-274.                                  | 5.4 | 69        |
| 10 | Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polymer Composites, 2009, 30, 1378-1387.              | 4.6 | 67        |
| 11 | Block Copolymer Organicâ^'Inorganic Networks. Formation and Structure Ordering. Macromolecules, 2003, 36, 7977-7985.                                         | 4.8 | 57        |
| 12 | Amine Cured Epoxide Networks: Formation, Structure, and Propertiesâ€. Macromolecules, 2000, 33,<br>3611-3619.                                                | 4.8 | 52        |
| 13 | Polymerization of dicyclopentadiene: A new reaction injection molding system. Journal of Applied<br>Polymer Science, 1985, 30, 2787-2803.                    | 2.6 | 45        |
| 14 | Epoxy-silica hybrids by nonaqueous sol–gel process. Polymer, 2013, 54, 6271-6282.                                                                            | 3.8 | 45        |
| 15 | The multifunctional role of ionic liquids in the formation of epoxy-silica nanocomposites. Journal of<br>Materials Chemistry, 2011, 21, 13801.               | 6.7 | 44        |
| 16 | Tunable reinforcement of epoxy-silica nanocomposites with ionic liquids. Journal of Materials<br>Chemistry, 2012, 22, 9939.                                  | 6.7 | 36        |
| 17 | Title is missing!. Die Makromolekulare Chemie, 1985, 186, 2025-2036.                                                                                         | 1.1 | 33        |
| 18 | Recent Applications of Ionic Liquids in the Sol-Gel Process for Polymer–Silica Nanocomposites with<br>Ionic Interfaces. Colloids and Interfaces, 2017, 1, 5. | 2.1 | 33        |

LIBOR MATEJKA

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Preparation and characterization of hybrid organic-inorganic epoxide-based films and coatings prepared by the sol-gel process. Journal of Applied Polymer Science, 2004, 92, 937-950.                                           | 2.6 | 32        |
| 20 | Polybutadiene-based polyurethanes with controlled properties: preparation and characterization.<br>Journal of Applied Polymer Science, 2000, 77, 381-389.                                                                       | 2.6 | 31        |
| 21 | Curing of epoxy resins with amines. Polymer Bulletin, 1985, 14, 309-315.                                                                                                                                                        | 3.3 | 29        |
| 22 | Mechanism and kinetics of curing of epoxides based on diglycidylamine with aromatic amines. 2. The reaction between diglycidylaniline and aniline. Macromolecules, 1989, 22, 2911-2917.                                         | 4.8 | 29        |
| 23 | Block-copolymer organic–inorganic networks. Structure, morphology and thermomechanical properties. Polymer, 2004, 45, 3267-3276.                                                                                                | 3.8 | 25        |
| 24 | Preparation of Novel, Nanocomposite Stannoxane-Based Organic–Inorganic Epoxy Polymers containing Ionic bonds. Macromolecules, 2012, 45, 221-237.                                                                                | 4.8 | 23        |
| 25 | Self-assembly of POSS-containing block copolymers: Fixing the hierarchical structure in networks.<br>Polymer, 2014, 55, 126-136.                                                                                                | 3.8 | 22        |
| 26 | Transesterification and Gelation of Polyhydroxy Esters Formed from Diepoxides and Dicarboxylic Acids. Advances in Chemistry Series, 1984, , 15-26.                                                                              | 0.6 | 15        |
| 27 | Cyclization in amine-cured N,N-diglycidylaniline epoxy resins. Polymer, 1991, 32, 3190-3194.                                                                                                                                    | 3.8 | 15        |
| 28 | Tremendous reinforcing, pore-stabilizing and response-accelerating effect of <i>in situ</i> generated nanosilica in thermoresponsive poly( <i>N</i> -isopropylacrylamide) cryogels. Polymer International, 2017, 66, 1510-1521. | 3.1 | 15        |
| 29 | Dynamic and static light scattering from critically branched polymer solutions. Die Makromolekulare<br>Chemie, 1984, 185, 2543-2552.                                                                                            | 1.1 | 14        |
| 30 | Curing of epoxides. Reaction of dicyanodiamide with phenylglycidyl ether. Angewandte<br>Makromolekulare Chemie, 1989, 172, 185-194.                                                                                             | 0.2 | 13        |
| 31 | Influence of the reaction mechanism on network formation in amine-cured N,N-diglycidylamine epoxy resins. Polymer, 1991, 32, 3195-3200.                                                                                         | 3.8 | 13        |
| 32 | Curing of epoxy systems at sub-glass transition temperature. Journal of Applied Polymer Science, 2006, 99, 3669-3676.                                                                                                           | 2.6 | 12        |
| 33 | Model reactions of amine curing of glycidylamine epoxy resins: Homopolymerization of<br>N-methylglycidylaniline. Journal of Polymer Science Part A, 1992, 30, 2109-2120.                                                        | 2.3 | 10        |
| 34 | Highâ€ <i>T<sub>g</sub></i> , heat resistant epoxy–silica hybrids with a low content of silica generated<br>by nonaqueous sol–gel process. Journal of Applied Polymer Science, 2014, 131, .                                     | 2.6 | 8         |
| 35 | Organization in sol–gel polymerization of methacrylate co-oligomers containing<br>trimethoxysilylpropyl methacrylate. Polymer, 2005, 46, 11232-11240.                                                                           | 3.8 | 4         |
| 36 | Formation of Epoxy Networks, Including Reactive Liquid Elastomers. Advances in Chemistry Series, 1989, , 303-318.                                                                                                               | 0.6 | 3         |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Epoxy-silica/silsesquioxane Polymer Nanocomposites. , 2009, , 1-84.                                                                                                                                            |     | 3         |
| 38 | Polyhedral oligomeric silsesquioxane (POSS)-based epoxy nanocomposite involving a reversible<br>Diels–Alder-type network as a self-healing material. Journal of Adhesion Science and Technology, 0, ,<br>1-22. | 2.6 | 3         |
| 39 | Fast Synthesis of Nanostructured Microspheres of a Bridged Silsesquioxane via Ultrasoundâ€Assisted<br>Sol–Gel Processing. Macromolecular Chemistry and Physics, 2009, 210, 172-178.                            | 2.2 | 2         |